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Major Director: Alenka Luzar 
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Understanding hydrophobic effects at different length scales is relevant to 

many complex and poorly understood everyday phenomena in materials science and 

biology. In this thesis, a variety of theory/computational methods in statistical physics 

and statistical mechanics are used to address three separated, but interconnected 

problems: (1) How solvation free energy scales with a partical size that is charged?  

This problem has never been attempted to solve before despite its immense 

importance in colloidal and protein solutions (J. Wang, D. Bratko, K. Leung and A. 

Luzar, Hydrophobic hydration at different length-scales: manipulating the crossover 

by charges, to be submitted to J. Stat. Phys. (Special issue on Water and Associated 

Liquids)); (2) Can onset to capillary evaporation, seen in some protein complexes 

with large hydrophobic areas be predicted in a simple way? A simple coarse-grained 

model of water/protein system, which is developed here shows the conditions for wet 
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and dry hydrophobic protein cavities, and is able to reproduce all atom simulation 

results. The method should serve as an intermediate step between the initial screening 

of protein hydrophobic cavities and expensive molecular simulations (J. Wang, S. 

Kudesia, and A. Luzar, Computational probe of dewetting events in protein systems, 

in preparation for submission to J. Phys. Chem. B); (3) How to predicts 

hydrophobicity of a mixed surface from the knowledge of its pure constituents? To 

this end, wetting free energy on synthetic and biological heterogeneous surfaces is 

studied. Two distinct mechanisms responsible for their non-additivity have been 

identified in each case (J. Wang, D. Bratko and A.  Luzar, Probing surface tension 

additivity on heterogenous surfaces: a molecular approach, Proc. Natl. Acad. Sci, 

under review). 
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Chapter 1. Introduction 

 

Hydrophobic effect pertains to hydrophobic hydration and hydrophobic 

interaction. Scheraga and coworkers1-2 made a useful distinction between the two 

phenomena: hydrophobic hydration refers to the structure of water in the immediate 

vicinity of the apolar solute molecules, and the thermodynamic properties of very 

dilute solutions. Hydrophobic interaction refers to the solvent induced interaction 

between two or more apolar solute molecules. It implies an association of solute 

molecules by solvent mediated force at finite concentrations. The free energy change, 

W(R), of bringing the two apolar solutes together from infinity to a separation R, 

termed the potential of mean force (PMF), is related to the radial distribution function 

of the two apolar solutes, gAA(R) , through the relation, ( ) ln ( )B AAW R k T g R  , 

where kB is the Boltzmann constant and T is the absolute temperature. 

Because of its importance in everyday life, the hydrophobic effect has been well 

documented in many review papers3-10. However, a more general problem initially  

proposed by Stillinger11 of different lengthscales and effects associated with 

hydrophobicity has not attracted much attention until the last decade12-15. 

Hydrophobic hydration and interaction both depend on length scale, but in different 

ways.  

In the case of hydrophobic hydration, water surrounding an apolar solute acts 

differently due to the different size of the solute. For a small apolar solute in aqueous 

environment, the hydrogen bond network is not perturbed significantly, and water can 
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manage to form hydrogen bonds around the solute. Each water molecule is still able to 

participate in up to four hydrogen bonds with its neighbors (Fig. 1a), same as that in 

bulk environment. However, if the apolar solute is sufficiently large, the water 

molecules near its surface can no longer maintain the complete hydrogen bond 

network, and water tends to sacrifice one hydrogen bond per molecule on average to 

minimize the energy loss11, 16-19 (Fig. 1b). There is a crossover of the solvation free 

energy from small apolar solute, where it is entropy dominated, to large apolar solute, 

where it is enthalpy dominated.6-7, 20  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hydrogen-bonding networks near small solute (a) (Ref 6), water molecule 

can make up to four hydrogen bonds to the neighbors. The blue and white particles 

represent the oxygen (O) and hydrogen (H) atoms of water molecules, respectively, 

red particle is the methane-like hydrophobic solute. (b) Water sacrifices one hydrogen 

bond per molecule near the surface of large solute. (Ref 21) 
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1.1 Crossover lengthscale studies of hydrophobic hydration 

Recent theoretical15, 20 and computer simulation studies7, 22 have revealed that for a 

small hydrophobic solute in water, the solvation free energy scales with the solute 

volume, and for a large hydrophobic solute, it scales with the solute surface area. For 

neutral apolar solutes, the crossover is predicted to be at the sub-nanometer scale,6-7, 15, 

20 which is the correlation length of the hydrogen bonds in water. I will introduce our 

own work about the crossover lengthscale in hydrophobic hydration and how 

electrostatic interactions may affect the crossover in current section. The detailed 

results and discussions will be presented in Chapter 3. 

With a simple mean field (MF) model, Luzar et al16-17 successfully predicted the 

25% reduction of water hydrogen bonds next to a planar hydrophobic surface by pure 

geometric restrictions, in good agreement with molecular simulations18 and Second 

Harmonic Generation (SHG) experiments19. The same MF model16-17 also predicted 

the hydrogen bonds’ contribution on the solvation free energy density of a planar 

hydrophobic surface. To seek the physical understanding of the predicted crossover6 

in hydrophobic hydration, we extended the model to spherical surfaces to predict the 

hydrogen bonds reduction near surfaces with different curvatures, and calculated the 

contribution from hydrogen bonds to the solvation free energy of spherical 

hydrophobic solutes. Based on the same idea of pure geometric restrictions in 

hydrogen bonding, we further developed a generalized model for hydrogen bonds 

reduction near surfaces of different geometries. In addition to the hydrogen bonding 

effect, we adapted the methods from Stewart and Evans23 to calculate the solvation 
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free energy from Van der Waals interactions between solvation water and hydrophobic 

solutes. By adding these two parts together, we obtained the mean field prediction of 

solvation free energy as a function of solute radii, in good agreement with all atom 

simulations.7 Our approach uses an efficient mean field model to catch the basic 

physics of the problem: Crossover happens when the range of interactions becomes 

small compared to the size of the solutes. The crossover lengthscale depends on the 

perturbation range of water at solute surfaces. 

So far, only the crossover lengthscale for the solvation free energy of neutral 

solutes have been considered in literature, however, water behavior and the crossover 

lengthscale of solvation free energy could be different when the solute is charged. By 

putting charges on the solute, the system will be more interesting as a model for 

biological scientists. In aqueous solution of neutral solutes, the relevant length-scale is 

the hydrogen bond correlation length, around 0.5 nm. In the case of aqueous solution 

of charged solute, water molecules and counter-ions around the solute screen the 

charges on solute based on Debye-Hückel theory and the relevant lengthscale could 

be related to the “Debye screening length”24, which is determined by ionic strength in 

the system. The screening effects may push the crossover to a larger length scale. (Fig. 

2) We should note that when we charge a hydrophobic solute, usually the hydration 

process becomes favorable (solvation free energy becomes negative), but there should 

still be a crossover in this context.  

Our studies about the crossover lengthscales involving electrostatic interactions 

would have an important consequence for biological modeling community: In 
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modeling of biomolecular systems, the solvation free energy is usually calculated 

by G A   ,25-27 where  is the surface tension and A is the surface area. The 

solvation free energy scales with the surface area in this relation. The size of a typical 

biological system is usually above the nanometer scale, which is always larger than 

the predicted crossover for neutral solutes. Therefore, the solvation free energy should 

always scale with the surface area, and the current treatment is adequate. However, 

most biomolecules have charges/partial charges on their atoms. The electrostatic 

interactions could possibly change the crossover to a different lengthscale (e.g. 

screening length is ~1 m in pure water, and ~1 nm in physiological solution).  

 

 

 

 

 

 

 

 

 

 

Figure 2. Solvation free energy (normalized by the surface area) crossover of neutral 

solutes (solid line) and our proposed crossover of charged solutes (dashed line).  

 

 



www.manaraa.com

                  6 

 

If that is the case, proteins could often fall in the regime where solvation free 

energy scales with volume. For example,  recent studies from Baker’s group28 

suggested that the term scaling with volume (pV, where p is the solvent pressure) in 

solvation free energy should be taken into account in the calculations of solvation 

forces with implicit solvent models in biological systems.  

In our studies, we use molecular dynamics (MD) simulations to calculate the 

solvation free energies of charged solutes with different radii but with the same charge 

densities on the surface. We vary the Debye screening length24 by adding different 

amount of mono-charged cations and anions into the solvation systems. However, due 

to the lack of screening charges in our reference state, the electrostatic part of the 

solvation free energy calculated in our model depends only weakly on the screening 

length. Furthermore, at normal condition of charge density and salt concentrations, the 

crossover is still in the same order of magnitude as that predicted in non-polar systems, 

just slightly over the 1 nm mark. Our findings suggest that it should be reasonable 

approximation to use the relation G A   in biological systems at large 

lengthscales.  
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1.2 Computational probe of dewetting events in protein systems  

In the case of hydrophobic interaction between small apolar solutes, solute-water 

distribution functions show apolar solutes separated by a layer of water (i. e. PMF 

solvent separated minimum is larger compared to solvent-contact minimum)29. In the 

case of water confined between large apolar solutes (large here means larger than the 

correlation length of the solvent), i.e. extended hydrophobic surfaces, the modified 

Kelvin’s Equation30,  

~ 2 / ( / )CD b L       ,         (1-1)     

predicts the critical distance Dc, where vapor state becomes more stable than liquid 

state. In the equation,  is the number density,  is the difference in chemical 

potential of water between the liquid and vapor phases,  is liquid/vapor surface 

tension, L is the lateral size of the surface and b is a geometrical parameter (of order 

1). Young’s equation coswl wv C          gives , where wl and wv denote 

wall/liquid and wall/vapor surface tension, respectively, and c is the contact angle on 

the apolar confinement surface.  

Hydrophobic confinement effects on the phase behavior of water between 

extended hydrophobic surfaces have been studied extensively in simulations and 

theory.8, 30-42 If the separation between two nanoscale hydrophobic walls is smaller 

than the critical distance Dc, the water confined between the walls will favor the vapor 

state, and may experience a phase transition from liquid state to vapor state (so-called 

cavitation or capillary evaporation).30, 43-45  
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Discussions of confinement-induced evaporation require one to make an 

important distinction between different criteria used to characterize hydrophobicity.33 

For cavitations in any system to take place, the contact angle of water on the surfaces 

must be above 90°. When only short-ranged interactions are present, this requirement 

is equivalent to having the ratio of the surface/water and water/water attraction, below 

0.5.33 In literature, a less stringent or weaker condition of hydrophobicity for surfaces 

to attract water less than water attracts itself is often invoked.46-47 This condition 

suffices to promote hydrophobic association but not for capillary evaporation. 

Recently, the capillary evaporation events attract more and more attentions due to 

their increasingly important roles in biological systems, for example, during the last 

stage of protein folding, the protein-ligand binding, protein aggregation, as well as 

biological self-assembling processes.9, 48-50 Note that it is very hard to identify a 

biological surface to fulfill the first criterion of hydrophobicity due to the nature of 

biological systems, although there are an abundance of surfaces that fulfill the second. 

In current section, I introduce a coarse graining approach we developed as a 

computational probe of dewetting (capillary evaporation) events in biological systems 

(focusing on the confinements in proteins). The complete model along with the results 

and discussions will be presented in Chapter 4. 

Water evaporation from hydrophobic confinements were successfully predicted 

by atomistic simulations,8, 32, 41-42, 51-52 as well as implicit models and coarse grained 

models of solvent,30-31, 34, 38-40 consistent with the macroscopic picture. Water 

depletion on nano-scale hydrophobic surfaces has also been directly observed in 
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Atomic force microscopy (AFM) in the tapping mode (AFM).53-59 The biological 

systems such as proteins are far more complicated than model hydrophobic solutes, 

although there are several attempts to study water behavior in the confinements of 

biological complex,60-61 discussing the last few layers of water getting out of the 

confinement in the final stage of protein folding by expulsion versus spontaneous 

evaporation, the details about the water evaporation events in biological systems were 

not well understood.  

Berne and coworkers made a series of studies with all atom computer simulations 

using empirical force fields to investigate water mediated hydrophobic collapse of 

proteins36, 51-52, 62. They first reported direct observation of the capillary evaporation of 

water in the confinement of melittin tetramer52, but no evaporation in some other 

protein systems with large hydrophobic patches consisting of hydrophobic amino acid 

residues (e.g. the BphC enzyme)61. The evaporation transition is attributed to both the 

presence of large connected areas of surface hydrophobic amino acid residues and the 

confined geometry in the melittin tetramer system. Employing a simple scoring 

function based on the distributions of hydrophobic residues on the surfaces forming 

the confinements,51 the same research group screened over 400 dimers, tetramers and 

multi-domain proteins and conducted atomistic simulations on the 50 top candidates 

to investigate the nanoscale capillary evaporation events in these protein complex, and 

reported direct observations of evaporation transition in only six protein systems,8, 

51-52 but not in most other candidate systems even though higher hydrophobic scores 

were achieved from their screening function.51  
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The capillary evaporation events in protein-ligand binding processes have been 

studied with a similar criteria:62 more than 1,000 protein-ligand systems were 

screened and 15 top candidates meeting the evaporation standards were chosen for all 

atom simulations, again only 6 out of the 15 top candidates exhibited evaporation 

transitions when putting water molecules in places of ligands in those complex, 

including the bovine -lacto globulin, reported earlier by Qvist et al25 to have a large 

dry cavity in its solvated form, based on a combination study of NMR experiments 

and computer simulations. In biological complex like proteins, the hydrophobicity of 

patches on their surfaces are not the only factors governing the drying transition of 

water in confinements, especially when they are usually surrounding by a lot of highly 

hydrophilic patches. The geometry/narrowness of the confinement also plays an 

important role to induce the evaporation transition of water. 

Different empirical models of water molecules and different treatments of 

long-ranged electrostatic interactions were tested in Berne group’s studies and 

evaporation transitions in those systems were reported to be robust, i.e. not model 

dependent.51 It indicates that the capillary evaporation events in protein systems are 

likely controlled only by the thermodynamic properties of the confinements. While 

all-atom molecular simulations are powerful and informative, they are also quite 

computationally expensive, more direct and efficient models and methods are 

preferred in the event when only thermodynamics (e.g. phase transitions) are 

important. The implicit solvent models and coarse graining approach have gained 

successes in predicting the confined water behavior between extended hydrophobic 
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surfaces, and also provided qualitative dynamic information about the processes.30-31, 

34, 38-40, 63 However, there are no direct studies of the capillary evaporation events for 

confined water available in literature to bridge between the model surfaces and more 

complicated biological systems, despite the fact that coarse grained models are widely 

accepted in protein folding community.64-65  

In our study, we take a step further to construct a coarse-grained model for both 

the confinements (proteins) and solvent (water) in the investigation of capillary 

evaporation inside protein complexes with large hydrophobic area, which are believed 

to be crucial during the final stage of protein folding and protein-ligand binding 

processes. We focused our studies on the protein systems that have exhibited water 

evaporation transition in detailed all-atom simulations. With this very computationally 

efficient model, we are able to predict capillary evaporations in same systems as 

identified by much more sophisticated methods in a considerably short amount of 

time. We can conclude that the capillary evaporation is controlled by macroscopic 

thermodynamics which can be captured by the coarse grained model taking both the 

shape of proteins and protein-water interactions into account. The molecular details 

such as the empirical force fields are not required in the model. 

 From recent studies, we have learned that large matched hydrophobic areas in 

two corresponding surfaces in protein systems are required but not sufficient to ensure 

the evaporation transition in the confined region. There should be two important types 

of effects inducing the water evaporation in melittin tetramer system: chemistry and 

geometry. From the geometric point of view, the concave shape of the confinement 
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may affect the hydrogen bonds network more than the slab geometry, so a more 

confined geometry such as that in the melittin tetramer system would induce the 

evaporation easier than other geometries. On the other hand, Giovambattista et al.66 

attempted to separate the chemistry part of the melittin tetramer system from the 

topological effects. They flattened both melittin dimer surfaces and studied the water 

inside confined region of the relatively flat surfaces, and found out the evaporation 

only occurred in a very small region close to the center of the hydrophobic patches on 

the surfaces. As stated previously, water evaporation process can only take place when 

the macroscopic contact angle of water on the surfaces exceeds 90o. We use a similar 

approach to flatten the melittin dimer surface and measure the microscopic analog of 

the macroscopic contact angle67 on the flattened surface. We indeed find a 

hydrophobic water contact angle (~113o) for the central region of the melittin dimer, 

and the capillary evaporation condition is satisfied. In this study, we reveal the 

physical reason of the capillary evaporation inside a confined protein system. 
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1.3 Wetting behavior of heterogeneous surfaces 

 The protein surfaces discussed in the previous section are taken from the 

Protein Data Bank (PDB), and they consist of different types of amino acid residues, 

with large disparities in hydrophobicity. This kind of heterogeneity is commonly 

present in surfaces involved in both materials and biology. Researchers are seeking to 

accurately predict the hydrophobicity of mixed heterogeneous surfaces given the 

information about their pure constituents. Therefore, it is crucial to understand the 

additivity or nonadditivity of surface free energies on heterogeneous surfaces. In 

current section, I will introduce our studies in probing surface free energy additivity 

on chemically heterogeneous surfaces using microscopic analogue of macroscopic 

contact angles, with surface heterogeneities in two different lengthscales (molecular 

scale heterogeneity and nanoscale heterogeneity). The complete results and 

discussions of this project will be presented in Chapter 5.   

Wetting phenomena on chemically heterogeneous surfaces are important in 

materials and biology, examples ranging from inkjet printing to protein hydration.68-69 

Conventional metrics of surface interactions, designed for homogeneous systems, can 

often be applied to mixed surfaces characterized by averaged properties of multiple 

ingredients. The design of composite surface materials, and characterization of 

biosurfaces, benefit from combining rules predicting the interfacial free-energy 

change of wetting,  from the knowledge about individual constituents and surface 

composition. In view of Young equation, cosc, the strength of inter-solute 

adhesion, Wa ~  2(+sg), relates to contact angle c; here  and sg denote surface 
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tensions of the solvent and dry solute, respectively.70 Contact angles on macroscopic 

heterogeneous surfaces are commonly estimated by Cassie equation71-72  

   cosc = fArAcosA + fBrBcosB                   (1-2) 

developed by assuming linear additivity of the wetting free energies, . Here f is the 

projected fractional area occupied by component ,  the contact angle on a 

homogeneous surface of type , and r the roughness factor defined as the ratio of 

solvent-exposed areas of patch of type  in the mixture and that of a surface fragment 

of equal projected area on a pure  surface. On macroscopically mixed surfaces, the 

roughness of surface components is often equal as on homogeneous surfaces (r~1), 

suggesting linear interpolation 

cosc = fAcosA + fBcosB                                      (1-3) 

Presuming additivity of molecular polarizabilities, dipoles, and charges, Israelachvili 

and Gee 73 proposed an alternative expression for the contact angle of surfaces mixed 

at the molecular level 

(1+cosc)
2=fA(1+cosA)2

 + fB(1+cosB)2
                      (1-4)  

Measurements and simulation studies in a broad range of systems, from 

Lennard-Jones model surfaces to self-assembled monolayers (SAMs), showed mixing 

relations for cosc to break down upon addition of hydrophilic surface islands. 

Measured deviations from the additivity predictions have different signs, resulting in 

more hydrophilic (positive deviation in cosc) or more hydrophobic surfaces (negative 

deviation).74-78 Simulation studies have so far not addressed systems with negative 

deviations. Positive deviations were attributed to differences between averaged 
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surface properties and those under the droplet perimeter 79-80, drop size effects 81, 

solvent depletion at the solid/liquid interface 78, and patch size dependence 82-83, an 

observation reinforced by recent adhesion force measurements.78 

Despite helpful insights from molecular simulations35, 37, 78, 81, 83-84, systematic 

studies of heterogeneous-surface free energy at the molecular level are still lacking, 

and the knowledge of underlying principles behind observed deviations of both signs 

from additivity remains incomplete. Among the various properties discussed as 

measures of wettability on molecular scale37, 84, the increase in the local 

compressibility of the solvent37, 85-86 has been proposed as a viable measure of 

hydrophobicity87-88 particularly useful in studies at molecular resolution87. Our 

calculations on molecularly mixed surfaces, reported in Chapter 5 (Section 5.3.2), 

capture compressibility changes consistent with contact angle variation that inherently 

averages over large areas. However, it is impossible to address surface free energy 

additivity from the compressibility perspective and contact angle remains the key 

quantity to study. We use molecular dynamics (MD) to measure the microscopic 

analogue of macroscopic contact angles67 on a variety of molecularly mixed surfaces 

as a function of composition. We consider functionalized synthetic substrates and 

biomimetic surfaces comprised of protein fragments to test predictions for surface free 

energies of heterogeneous surfaces and their generalizations to patterned surfaces 

mixed at molecular and fragment levels.     

Thermodynamics predictions for patterned surfaces are impeded by the lack of a 

rigorous measure of surface composition. For molecularly mixed surfaces, projected 
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fractional areas, f, are only approximate descriptors as the actual exposure of 

individual moieties can depend on local environment (see e.g. Fig. 3 in ref 78). In 

analogy with the inclusion of macroscopic roughness in Eq. 1-2, our study addresses 

the modified exposure of distinct types of surface groups in the mixture. For 

molecularly mixed synthetic surfaces we show that changes in the solvent-accessible 

surface (SAS) of mixture components provide a unified, molecular-level explanation 

of both positive and negative deviations from the linear additivity of cosc. Our 

results show linear additivity, analogous to Cassie equation, prevails on surfaces with 

small patches and moderate polarity variations when SAS-based fractional areas 

determine surface composition.  

 Heterogeneity is a generic feature of natural materials. For example, a spectrum of 

hydrophilic/hydrophobic surface compositions is spanned as a newly synthesized 

protein approaches native conformation. In addition to calculations on model 

synthetic surfaces, we are the first to study the microscopic analogue of contact angles 

on protein-like biological surfaces. We demonstrate and interpret prominent 

deviations from additivity on prototypical biological surfaces where stronger polarity 

variations come into play. Here, the origins of deviations from additivity in cosc are 

different; they include anti-cooperative interactions between a water molecule and 

multiple polar sites on the surface, preferential wetting of polar patches, and changes in 

the comparatively loose connection between the liquid interface89 and hydrophobic 

domains. These features conform with the stronger influence of scarce hydrophilic 

moieties, critical to tuning of biomolecular solubility and function in aqueous solution84, 
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87. Our work should assist in predictions of protein interactions and abatement of 

unwanted association that interferes with protein refolding in biotechnology90. 

 

The rest of the dissertation is organized as follows: I describe general models and 

methods used in our studies in Chapter 2, and they are also discussed in details when 

modified and actually applied in each research project in the following chapters. The 

three major research projects are presented in the order of their appearances in the 

introduction, in Chapters 3, 4, 5, respectively. Additional information and technical 

details are documented in “Appendices” section towards the end of the dissertation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

                  18 

 

Chapter 2.  Models & Methods 

 

 I have applied various models and methods of statistical physics and 

statistical mechanics 91-93 on both molecular and mesoscopic scales, all of them listed 

in Fig. 3 under different categories. I will have an overview for each of these standard 

models and methods in current chapter, based on different lengthscales. 

 

 

 

 

Figure 3. Standard methods and models used in this dissertation. 
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2.1 Molecular Scale 

Models 

2.1.1 Empirical force fields for intermolecular interactions 

In classical molecular simulations, the intermolecular and intra-molecular 

interactions are modeled by the empirical force fields with the mathematical energy 

functions. The intra-molecular interactions include energies from bonds, angles, 

torsions, dihedral angles and so on, while the intermolecular non-bonded interactions 

include the short-ranged Lennard-Jones (LJ) energy94 and the long-ranged 

electrostatic energy between molecules. The parameters in empirical force fields for 

all types of interactions are carefully parameterized to reproduce both experimental 

results and selected properties in high-level quantum mechanical calculations.  

There are many types of force fields developed by different groups and they have 

been widely used in all kinds of systems in computer simulations, ranging from both 

small molecules and macromolecules to biological systems such as proteins and 

DNAs. Among them, I have used the AMBER (Assisted Model Building and Energy 

Refinement) force fields95, originally developed by Peter Kollman's group at the 

University of California, San Francisco; the CHARMM (Chemistry at HARvard 

Molecular Mechanics) force fields96 originally developed at Harvard University; and 

the OPLS (Optimized Potential for Liquid Simulations) force fields97 developed by 

William L. Jorgensen’s group at Yale University. The water model is also important in 

studying the hydrophobic effects, I use a generally accepted three-site rigid and 

non-polarizable water model in Extended Simple Point Charge (SPC/E)98 model for 
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its efficiency and reproducibility of many structural and thermodynamic properties of 

liquid water at ambient condition, such as effective pair potential, density, radial 

distribution functions, and diffusion constant. In different projects, I have also tested 

other water models, including the transferable intermolecular potential 3 point 

(TIP3P)99 model and the Simple Point Charge (SPC)100 model, and both of them give 

similar results as the SPC/E model in my studies. 

The sketch of SPC/E water model is shown in Fig 4, in addition to the partial 

charges on all of the three sites. Oxygen site has Lennard-Jones94 parameters 

of 0.6502 /kJ mol  , and 3.166  Å.  

 

 

 

Figure 4. Parameters for Extended Simple Point Charge (SPC/E)98 water model  
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I have mostly been using the rigid models in molecular simulations part of my 

study. Therefore, I will focus on the intermolecular interactions in this section. In 

classical molecular simulations, the interactions are assumed to be pairwise additive. 

The short ranged interactions of a system are normally represented by Lennard-Jones 

(LJ) energies as shown in equation 2-1,  

min, min,12 6[( ) 2( ) ]ij ij
LJ ij

i j ij ij

R R
E

r r




  ,        (2-1)      

in which i, j represent the atoms in the system, i,j is the LJ well depth of the pair, 

taken as the geometric mean of the  of each atom, rij is the distance between atoms i 

and j, Rmin,ij is the LJ radius for the pair, usually calculated by the arithmetic mean of 

atomic radii of the atoms, another common representation is 
1
6

min, 2ij ijR   . The first 

term in equation 2-1 is the repulsive part of the interaction, and the second term is the 

attractive part. Total LJ energy represents the nature of Van der Waals interaction 

between atoms.  

In addition, if there are charges present in the system, the long-ranged electrostatic 

interactions are included in the potential energy. The electrostatic energies are 

calculated by the Coulomb's law in Equation 2-2, 

4
i j

Coulomb
i j ij

q q
E

Dr

 ,           (2-2) 

where qi and qj are the partial charges on atoms i and j respectively, and D is the 

dielectric constant. 

 The short-ranged and long-ranged interactions are treated differently in molecular 

simulations, details will be given in the following sections. 
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Methods 

2.1.2 Molecular Dynamics Simulation 

Molecular Dynamics (MD) is one of major methods in computer simulations. The 

idea is to model the many body systems similarly as in real experiments, but at the 

molecular level and much shorter time scales as complements to conventional 

experiments. At the same time, we also want our system to be able to represent a 

macroscopic sample to calculate the thermodynamic properties. The periodic 

boundary condition is usually enabled to achieve this goal. Part of a two-dimensional 

projection of an infinite sample system is sketched in Fig. 5, the simulation box is the 

in the center. In such system, the atom moving out from one boundary of the 

simulation box enters from the opposite side at the same time. 

 

 

Figure 5. Periodic Boundary Condition in Molecular Dynamics simulation (projected 

on two dimensions), the box in the middle (with filled spheres) represents the 

simulation box. The arrow indicates the direction of the movement of that particular 

atom. 
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To start a MD simulation, we first need to initiate all the atomic coordinates of the 

system, create initial velocities on the atoms following a Gaussian distribution at the 

simulation temperature, and calculate the forces (as derivatives of the potential energy) 

based on empirical force fields discussed in Section 2.1.1. The total potential energy 

of particles in a three-dimensional system is  

, ,

1
' (| )

2total ij
i j n

U U r nL 

 
        (2-3) 

where ijr


is the vector between each pair in the simulation box and n


 is an arbitrary 

vector with three integers and L is the box size of the simulation box. The prime in the 

sum indicates the self interactions (when i=j and n


=(0,0,0) ) is excluded.   

The interactions between atoms are assumed to be pairwise additive in equation 

2-3, however, when the periodic boundary condition is applied, the system size is 

infinite, and it is not feasible to evaluate the interactions for each pair in an infinite 

system. Practically, we can only deal with short-ranged interactions (discussed below 

in this section), and mathematical transformations are needed for the long-ranged 

electrostatic interactions (discussed in Section 2.1.3). 

We can afford to truncate short-ranged interactions (i.e. the Lennard Jones 

interactions) beyond a certain cutoff distance rc. There are different ways to truncate 

the interactions, including simple truncation, truncation and shift, and minimum 

image convention. To avoid discontinuities in the potential energies, the “truncation 

and shift” method is applied in our study. In this treatment, the interaction gradually 

vanishes at the cutoff radius, as described in equation (2-4). 

'( ) 0U r  , when cr r ; '( ) ( ) ( )cU r U r U r   when cr r .    (2-4) 
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The force on each atom is then calculated by the derivative of the potential energy, 

i
i

i

U
f

r


 


. And by solving the Newton’s equations of motion i i im r f , we are able to 

derive the positions and velocities of the atoms at next time step (usually at the scale 

of femto-seconds). Typically the Verlet algorithm101 is employed for integrating the 

equations of motion,  

2( ) 2 ( ) ( ) ( )r t t r t r t t t a t         
    (2-5a) 

( ) ( )
( )

2

r t t r t t
v t

t

    




 
        (2-5b) 

( )r t


 is the coordinates at time t, ( ) ( ) /a t f t m
 is the acceleration at time t, where 

m represents the mass and f (t) is the force at time t and ( )v t


 is the velocity at time t. 

In equilibrium, we can calculate thermodynamic properties of the system by 

averaging them over all the time steps. We can also get the dynamics of the system 

during the simulation as the system evolves by itself. The molecular dynamics 

simulations can be complicated in practice, especially when we are dealing with 

systems at large scales, fortunately, there are many open source computational 

packages available, which are usually free for research purposes. I have used the 

LAMMPS102 ("Large-scale Atomic/Molecular Massively Parallel Simulator") 

developed and maintained by a group in Sandia National Lab, and the DL_POLY 

simulation package103 developed at Daresbury Laboratory by W. Smith and coworkers. 

In both cases, I tested the simulation packages for our systems and made 

modifications in the source codes inside these packages to make them suitable for my 

studies. (A typical subroutine additional to the standard package is attached in 
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Appendix C) 

 

2.1.3 Long-range electrostatic interactions 

The long-range electrostatic interactions are always difficult to compute in 

computer simulations. In molecular simulations, the electrostatic interaction 

(Coulomb interaction, shown in equation 2-2, falls off at the rate of r-1) is a typical 

type of the long-ranged interactions. As illustrated in Fig. 6, the infinite simulation 

box can be built up by roughly spherical layers with periodic boundary conditions. 

However, due to the long-ranged nature of these interactions, the truncation treatment 

described in previous section may cause large deviations in simulations. The brute 

force solution to such problem is also impractical even with modern computers, and 

researchers have been questing and developing efficient alternatives over the decades.  

The most common treatment for the Coulomb interactions is the Ewald 

summation method104, and its extensions such as SPME (Smooth Particle Mesh 

Ewald)105. The idea is to split the electrostatic interactions into two parts in both the 

error function 
2

0

2
( )

x terf x e dt


   and the complimentary error 

function ( ) 1 ( )erfc x erf x  . The complimentary error function vanishes to zero with 

increasing x quickly, this part becomes short-ranged and can be summed in real space 

similarly by the truncation method. The other part containing the error function is 

Fourier transformed into a reciprocal space (so called k space), and the sum converges 

quickly there by increasing the k vectors. The final results are given in equation 2-6, 



www.manaraa.com

                  26 

 

where V is the volume of simulation box, k is the vector in the reciprocal space,  is 

the coupling parameter, qi is the charge on atom i, and ri  is the coordinates of atom i.  

1
2

2 2
2

0 1

2

1

1 4
| exp( ) | exp( / 4 )

( )1
( / )

2

N

ielectrostatic i
k i

N N
i j ij

i
i i j ij

U q ik r k
V k
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q

r

 


 

 

 

  

 

 

 

 

        (2-6) 

Although the Ewald summation methods are commonly accepted in computing 

long-ranged interactions in molecular simulations, they are still computationally 

expensive, especially in some large simulation systems we are studying. There are 

alternative methods developed by different groups recently, including the “Gaussian 

Truncation (GT)” model from Weeks group106 in University of Maryland and the 

“Force Matching (FM)” method from Voth group107 in University of Utah. I will 

assess these methods in details in Chapter 3. 

 

Figure 6. Building up the infinite simulation box in a roughly spherical shape in 

Ewald summation method.92 The system is simplified to contain only two pairs of 

ions (red for anions and green for cations). 
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2.1.4 Thermodynamic Integration for Free energy calculation 

Free energy is a useful measurement of the preferred direction of different kind of 

reaction, and in most cases the free energy difference between states is most easily 

calculated and also most interesting. One way to calculate the free energy is by 

thermodynamic integration. We use this method to calculate the solvation free energy 

of a solute in water (in Chapter 3).  

We denote the total solvation energy of the solute as 0
1

( )
wN

sol i
i

V V r


 , the 

interactions between the solute and all the water molecules in the system. To get the 

solvation free energy, we increase the interactions in the system gradually by a 

coupling parameter , ranging from 0 to 1, =0 when there’s no water-solute 

interaction in the system, and =1 when the water-solute interactions are fully 

charged, typically 10 steps are used between the charging process (=0, 0.1, 0.2 … 1), 

and the free energy calculated by thermodynamic integration process is given in 

equation 2-7. 

1

0

sol
solvation

V
G d









   
                             (2-7) 
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2.2 Mesoscopic Scale 

Models 

At the mesoscopic scale, the molecular simulations with all atomistic details may 

not be efficient and in most cases not needed if we are only interested in the 

thermodynamic quantities. Coarse graining procedures are among the choices to study 

large systems, e.g. proteins. Just as the name implies, the idea of coarse graining is to 

use cruder models for atoms or atomic groups, and averaged interactions between 

these groups to reduce the degrees of freedom in the system, hence reduce the 

computational burden in simulation. Our coarse grained method is based on the lattice 

gas model. 

2.2.1 Lattice gas model 

Lattice gas model is equivalent to the Ising model91, only with different 

representations. Instead of having spins which are only allowed to be at two states (up 

or down, represented by 1S   ) in Ising model, each site in a lattice gas system is 

either empty or occupied by one liquid molecule, and no two molecules can be at the 

same lattice site, the variable transformation is ( 1) / 2n S  , so n can only take the 

value of 0 and 1. Only molecules on the nearest neighboring lattice sites have 

interactions between each other with a coupling energy ( in equation 2-8), otherwise 

the molecules are independent.  

In a three-dimensional lattice gas model, the system is modeled by a three 

dimensional box of size LxLyLz with cubic lattice sites, and each site can be 

occupied either by liquid or vapor. The Hamiltonian is     
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,

  i j i
i j bulk i

H n n n 
 

    ,                               (2-8) 

the first term on the right hand side represents the water-water interactions, ni/j = 0 

when the site i/j is occupied by vapor, and ni/j = 1 when the site is occupied by liquid, 

 is the interaction parameter between neighboring liquid water occupied sites,  is 

the chemical potential.  

In the lattice system we are using for confined water in proteins, certain lattice 

sites are fixed to represent the protein surfaces. The modified model and parameters 

are discussed in details in Chapter 4. 
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Methods 

 The analytical and numerical methods applied in the mean field studies for 

hydrophobic hydration are discussed in details in Chapter 3 and Appendices. I will 

focus on introduction of the Monte Carlo simulations in this section. 

2.2.2 Monte Carlo Simulation 

The Monte Carlo method was originally developed at the end of the Second 

World War in studying the diffusion of neutrons in fissionable material by a group of 

scientists in Los Alamos National Laboratory. Since then, it has been widely applied 

in statistical physics, especially as an alternative and complementing method to the 

Molecular Dynamics (MD) simulation discussed in Section 2.1.2.  The name of 

Monte Carlo (MC) method comes from the fact that the random numbers are 

extensively used in the method, and the City of Monte Carlo is famous for its casino. 

The random numbers are generated uniformly in the interval from 0 to 1, to avoid 

biases in the sampling. One advantage of the MC method compared to the MD 

simulation is that it could sample a broad range of the phase space more effectively, 

by making some “unphysical moves” in the system, and help the system to reach 

equilibrium fast, the shortcoming is that there would be no straightforward way to 

extract the dynamic information of a system from MC.  

The steps in a basic MC simulation of a system with N particles at temperature T 

are described briefly as following: First, a particle is selected at random, and the 

energy involving this particle is calculated as U(r); Then give the particle a random 

displacement r’=r+, and calculate the new energy U(r’); The difference in energy of 
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such a trial move can be computed and the move from r (old configuration) to r’ (new 

configuration) is accepted with the probability: 

( ) min(1,exp{ [ ( ') ( )]}acc o n U r U r    ,      (2-9) 

where acc denotes the probability of acceptance, min() takes the smaller number in 

the bracket and =1/kT is the Boltzmann factor, with k= 1.3806504(24)×10−23 J/K-1. 

This algorithm is first documented by Metropolis et al. in 1953,108 and sometimes 

referred to Metropolis Monte Carlo method, which satisfies the detailed balance of the 

system: ( ) ( ) ( ) ( )P old P old new P new P new old   , and alternatively,  

( )/( ) ( )

( ) ( )
new oldE E kTP old new P new

e
P new old P old

 
 


      (2-10) 

At equilibrium, the thermodynamic quantities could be taken by averaging over 

all the configurations during trial moves. The techniques such as periodic boundary 

condition, truncation method for short-ranged interactions and methods for 

long-ranged interactions discussed in Section 2.1 also apply to the MC simulations.  

 

2.2.3 Glauber dynamics & Kawasaki dynamics 

There are two types of dynamics to study the lattice gas system described in 

Section 2.2.1 with Monte Carlo (MC) simulation. In Glauber dynamics109, a liquid 

occupied sites in lattice gas can evaporate or appear anywhere in the system with 

temperature dependent probabilities during a trial move, the number of particles in the 

system is not conserved, it uses Grand Canonical ensemble (the chemical potential , 

volume V and temperature T are constant during the moves). The procedure of 

Glauber dynamics of an Ising system is described as following: One spin out of an 
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N-spin system is chosen at random, and the energy of flipping that spin is calculated 

at E, and from detailed balance, the probability of accepting a spin flip attempt is 

/1/ (1 )E kTe . One unit of time in is N spin-flip attempts. 

Although the Glauber dynamics MC method is qualitatively informative, it does 

not give a physical time scale in the system, since there is no mass transport 

associating with the nonphysical moves. To incorporate the effect of mass transport, 

the Kawasaki dynamics110 was developed a little later, where solvent (water) occupied 

sites can only jump with temperature dependent probabilities from one place to an 

empty neighboring site, the total number of particles is conserved during trial moves 

(the number of particles N, volume V and temperature T are constant during the 

moves). The acceptance probabilities of both methods are determined by Metropolis 

criterion (equation 2-9).108   
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Chapter 3. Crossover length scale studies of hydrophobic 

hydration 

  

As introduced in Section 1.1, the crossover lengthscale of hydrophobic hydration 

is of interest in both theoretical and bio-modeling community. In current chapter, I 

will first discuss the mean field model based only on the geometric restrictions to 

predict hydrogen bonds reductions near hydrophobic surfaces, and further the 

solvation free energy of spherical hydrophobic solutes. Then our molecular simulation 

studies of electrostatic contributions to the hydration of spherical solutes will be 

presented in the second part of this chapter. 

 

3.1 Mean Field Model 

The mean field model is inherited from Luzar et al.’s earlier work16-17, which has 

successfully predicted that each water molecule sacrifices one hydrogen bond on 

average at planar hydrophobic surface. We have extended the same model to the 

spherically curved surfaces to make it suitable to study the solvation of hydrophobic 

solutes in water. Furthermore, a generalized model with similar idea has been 

developed during the process. 

We assume in bulk conditions, each water molecule can form up to four hydrogen 

bonds with the neighboring water molecules in a tetrahedral network. The distance 

between the pairs should be equal to the length of a pair O-H…O, d = 0.3 nm, and the 

angle between the bonds is the tetrahedral angle T = 109.5o. 
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3.1.1 Convex Surfaces 

For the convex surfaces in water (a spherical solute etc.), let the radius of the 

curvature be R, and the distance from central water molecule to the center of the 

curvature be (R+x0). The four neighboring positions of possible hydrogen bonded 

water molecules are controlled by two angles (depicted in Fig. 7): [0, ]  is the 

angle between the surface normal and the central axis of the tetrahedron; 

[0,2 ]  is the rotation angle of the central axis of the tetrahedron. If we make a 

tangent plane to the surface, the distance of the four possible hydrogen bonding 

positions to the plane can be described by the parameters in equation (3-1), derived 

from geometric relations with the auxiliary chart in Fig. 8. 

 

 

 
 

 

Figure 7. Model used to represent the water molecules near the convex interface. (left) 

side view(right) bird’s-eye view from the rotation axis. The notations are introduced 

in the text. 
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Figure 8. Geometrical calculations for convex surface. 

 

 

 

1 0 cosx x d    

( 2, 3, 4)sin sinj j jx h r     , 

2 3 4

2 4
, ,

3 3

            ,                (3-1) 

where sin( )Tr d     , and 
2 2

0 cosh x d r    . 
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Therefore, the distance from the i-th (i=1,2,3,4) water molecule to the center of 

curvature becomes  

2 2 2
0( )i iy d x x    

2 2 2 2 2 2 2
0( ) ( ) ( )i i i i i iR y R x R d x x R x               (3-2)    

The correlation length in the model is 0.3 nm, so the surface layer thickness (the 

maximum distance of the central water molecule from the surface, x0 is 0.3 nm. 

Within this model, we only consider the geometrical restriction for the hydrogen 

bonds between water molecules. If the distance from a certain tetrahedron vertex 

position to the center of curvature is larger than the curvature radius (Rj > R), we 

assume this hydrogen bond is allowed, and should be counted in the following 

calculations. On the other hand, if Rj < R, it is not possible to form a hydrogen bond 

from this position to the central water molecule, and this bond should be excluded. 

The possible bonding condition requires the position of xj satisfies the relation: 

2 2
0 02 2 0j jx x x R xd              (3-3) 

We may define an equation to represent the possible bonds of a center water 

molecule which is x0 nm away from the surface and with certain orientation (,). 

 0 , , 1i x     if the number of possible hydrogen bonds equals to i, otherwise, 

 0 , , 0i x    . The ratio of the possible hydrogen bonds each water molecule can 

make at certain distance x0 away from the interface, including all possible orientations, 

is calculated by integration16: 

2

0 0

0 0

1
4( ) ( , , )i iY x x d d

 

                           (3-4) 
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 When only the geometrical restriction is considered, in bulk condition, no 

interface exists, and each water molecule can make four hydrogen bonds to its 

neighbors. Let the uniform number density of bulk water be w, then the average  

density of possible hydrogen bonds in bulk water should be 2w. When we bring in 

the interface, the average hydrogen bond density is reduced due to the geometrical 

restriction we calculated above, and it becomes  

4

0 0
0

1
( ) ( )

2 w i
i

x i Y x 


  ,   0 [0, ]x d .              (3-5) 

The difference between the average number of hydrogen bonds at the interface and in 

the bulk system is the integral of equation (3-4) over the interfacial region, 

0 0

0

[2 ( )]
d

wI x dx                                       (3-6) 

We can monitor the reduction of the hydrogen bonds near the surfaces of 

hydrophobic solutes at different radius due to pure geometric restrictions. The Yi(x) 

functions defined in Equation (3-4) reflect the ability of water to make i hydrogen 

bonds at distance x0 away from the solute surfaces. At the small lengthscale shown in 

Fig. 9(a), the function Y4(x0) (maroon curve) becomes non-zero very close to the 

solute surface (x0 < 0.1 nm), and Y1(x0) (red curve) is always negligible. At the larger 

length scale shown in Fig. 9(b), the function Y1(x0) (red curve) is non-zero very close 

to the solute surface (x0 < 0.05 nm), and Y4(x0) (maroon curve) is zero until (x0 > 0.1 

nm). That means the water always tends to make more hydrogen bonds near a small 

solute than near a large solute, as expected. 

After integrating the Yi(x0) functions over the surface region 00 0.3x nm  , we 
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get the surface-to-bulk hydrogen bonds ratio plotted in Fig. 10. It is the ratio between 

the numbers of possible hydrogen bonds each water molecule can form at the solute 

surface to the bulk water (we assume each water molecule can make four hydrogen 

bonds in bulk). As solute surface becomes sufficiently large, the reduction in 

hydrogen bonds reaches 25%, in agreement with the results at planar surface.11, 16-19 

 

 

 

 

a)            b) 

 

 

 

 

 
 
 

Figure 9. The fractions of water molecules able to form at most i bonds as a function 

of the distance from the solute surface. The functions Yi(x0) are defined in Equation 

3-4. a) water molecules near small solute (R=0.5 nm) b) water molecules near large 

solute (R=10 nm) 
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Figure 10. The surface-to-bulk hydrogen bonds ratio (described in text) dependence 

on the radius of the solutes (Convex curvature). 
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3.1.2 Concave Surfaces 

Similar to the convex curvature described in the previous section, the possible 

bonding condition of water molecules near a concave curvature can also be derived 

based on geometric calculations.   

    

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Geometrical calculations for convex surface. 
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Here, instead of equation 3-3, the position of all the possible bonding water 

positions xj must satisfy the relation,  

2 2
0 02 2 0j jd x x x R x       ,                           (3-7) 

to be able to form hydrogen bonds with the center molecule. We can apply the 

equations 3-4 and 3-5 to water molecules near the concave surfaces as well to 

calculate the reduction of surface hydrogen bonds compared to bulk, and the curve is 

shown in Fig 12, as the hydrogen bond ratio increases with radii of the curvature, and 

reaches the plateau value of 75% when the radius is sufficiently large, in good 

agreement with the results at planar surface.11, 16-19 

 

 
 

 

Figure 12. The surface-to-bulk hydrogen bonds ratio dependence on the radius of the 

concave curvature. 
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3.1.3 Generalized Model Surfaces 

The mean field model can further be extended to all kinds of model surfaces in 

three-dimensional space. Instead of two angles for the tetrahedron rotations near the 

spherical surfaces, three angles similar to the rotational Euler angles in the space are 

needed in the generalized model, as shown in Fig. 13. T is the tetrahedral angle, 

109.5o, the central water molecule is depicted as a red sphere and surrounding 

possible hydrogen bonding positions with three angles ,ψ, are in magenta color 

(following the tetrahedral geometry). 

 

 

 

 

Figure 13. Representation of a tetrahedral system with three angles (described in 

text). 
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The x, y, z coordinates of the four possible hydrogen bonding positions can be 

derived from geometric calculations, although they are more complicated than the 

ones shown in previous sections: let d be the correlation length of the mean field 

model, 0.3 nm, and (x0, y0, z0) be the coordinates of central water molecule. The 

possible bonding position #1 has the coordinates: 

1 0 sin cosx x d                (3-8a) 

1 0 sin siny y d                (3-8b) 

1 0 cosz z d                (3-8c) 

Let ( )Tr d     , and  

0 sin cos
3h

d
x x                (3-9a) 

0 sin sin
3h

d
y y                (3-9b) 

0 cos
3h

d
z z                (3-9c) 

2 / 3*( 1)i i       for i=2,3,4.         (3-9d) 

then the rest three possible positions for water are: 

[(cos sin )*cos cos *sin )]i h i ix x r            (3-10a) 

[(cos sin )*sin cos *cos )]i h i iy y r            (3-10b) 

sin sini hz z r              (3-10c) 

where i=2,3,4. The coordinates (xi, yi, zi) will be used in tests to satisfy various 

criterions needed for certain geometries of model surfaces. 

In principle, with the generalized Mean Field model, it is possible to estimate the 

hydrogen bonds’ reduction based on pure geometric restriction near a model 

hydrophobic surface with any shape, given the mathematical functions or coordinates 
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of the surface geometry. Unfortunately, the correlation length in the model is always 

the hydrogen bonds length (0.3 nm), and there are no long-ranged interactions 

included in our model. Therefore, any structure correlation length larger than 0.6 nm 

will be considered the same in the model, which limits the application of the model to 

a wider range of practical problems. However, the generalized mean field model 

completes the geometric study of water hydrogen bonds near model hydrophobic 

surfaces and we are looking forward to using these results in future studies. 

 

3.1.4 Mean Field model estimation of solvation free energy 

Hydrogen bonds’ contribution to the surface free energy of a model hydrophobic 

surface is studied by a model originally developed by Luzar and coworkers.16 By 

integrating over the interfacial region, the surface free energy density based on the 

model is related to the reduction of surface hydrogen bonds:  

ln[(1 ) / ( )]EF
kT e I

A
 

    


.                           (3-11) 

A is the surface area, and I is defined in equation 3-6. 

The parameters  (the ratio between two sub volumes of bound and unbound 

O…OH pairs) and E (the energy of hydrogen bonding) are obtained by fitting the 

results from spectroscopy experiments111-112. We use =288 and E=-13.40.8 kJ/mol, 

in line with the hydrogen bonding energy in literature.113  

 In the studies of solvation free energy of hydrophobic solutes, we only need to 

consider the convex curvatures, and the contribution from reduction of hydrogen 

bonds of interfacial water can be calculated from results discussed in section 3.1.1 
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(Fig. 10). Solvation free energies contributed by hydrogen bonding reduction are 

normalized by surface area, and plotted as a function of solute radii as the black curve 

in Fig 14. The solvation free energy density (solvation free energy over the solute 

surface area) is equivalent to the surface tension.  

 

 

 

Figure 14. Comparison of solvation free energy (normalized by surface area) between 

molecular simulations and mean field model predictions. The black curve only counts 

the hydrogen bonding effects, the orange curve only counts Van der Waals interactions, 

and maroon curve counts both effects. The blue open circles and green open diamonds 

are data from two computer simulations (ref 6 and 7 respectively), the dashed lines are 

guides to the eye. 
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In addition to hydrogen bonds effects, the Van der Waals interaction effects on the 

solvation free energy have been studied over the past century. We have mostly 

adapted the results from Fowler’s original work114 in 1936 and more recent work from 

Stewart and Evans.23 The details and derivations are shown in Appendix A. We use 

the Lennard-Jones parameters of the SPC/E (Extended Simple Point Charge)98 water 

model and equations (A-14) and (A-17) (in Appendix A) to calculate to the surface 

free energy from the Van der Waals contribution (orange curve in Fig 15).  

Adding both parts together, we get the complete solvation free energy from mean 

field model prediction (maroon curve in Fig 14) and it can be directly compared to the 

computer simulation results6-7, which have included all the details about the water 

molecules (open circles and open diamonds in Fig 14). As shown in Fig. 14, the 

small-to-large crossover occurs at a similar radius (around 0.5 nm) based on our mean 

field model. This is the range of interactions (hydrogen bonds and Van der Waals 

interactions) in the solvation system of neutral solutes. 
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3.2 Molecular simulation studies for charged solutes 

In previous section, we only considered the solvation systems of neutral apolar 

solutes. However, the systems with charged solutes are of more interests for studies of 

biological systems. As we discussed in Section I, the crossover lengthscale of charged 

solutes between the two regimes (solvation free energy scaling with volume and 

scaling with surface area) is important in biological studies.25-28  

In charged systems, the mean field model involves numerically solving the 

Poisson Boltzmann equation115 (Described in Appendix B). There are both slowly 

varying background field and instantaneously varying field in our solvation systems. 

The Mean field model averages them together. The model works fine for the potential, 

since the positive and negative parts in potential cancels out. However, when it comes 

to the dielectric energy, the Laplace operator of the field does not cancel (as shown in 

equation 3-12), in this case, the mean field model has natural difficulty in predicting 

the dielectric energy. 

2

2DielectricE dV
                                (3-12a) 

2 2dV dV                                 (3-12b) 

Therefore, the solvation free energies in charged solute systems are studied in 

molecular simulations. The model used in the calculation is similar to that reported by 

Dzubiella and Hansen116. The water molecules are simulated with SPC/E model98, and 

the solute is represented as a hard sphere, which interacts with heavy atoms (water 

oxygen atoms and counter-ions) as 
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12
0 0( ) ( )    V r r R                    (3-13)   

where the parameter  is fit to make the repulsive energy equal to kBT at the distance 

o

0 1Ar R   , and the radius of the solute can be defined as
o

0 1 AR R  .  

There are two steps in the thermodynamic integration to calculate solvation free 

energy. The first step is to grow the neutral solute (without charge) to the desired size, 

and the coupling parameter  in equation (2-7) (Chapter 2) is naturally chosen to be 

the radius of the solute. The second step is to charge the solute gradually with a 

coupling parameter , where ( )Q Q   . 

For the first step, we were able to reproduce the results from ref 116, shown in Fig 

15, the crossover occurs at ~0.5 nm. 

 

 

Figure 15. Solvation free energy as a function of solute radii for neutral solutes.  

(inset) Solvation free energy density (normalized by surface area) as a function of 

solute radii, the dashed line indicates the liquid/vapor surface tension (72 mN/m). 
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In the second step, the system we are studying systems consist of one macro-ion 

(solute), counter-ions and sufficient water molecules solvating the macroion. The 

solvation free energy is the energy difference between two states (in vacuum and in 

water solution, as in equation 3-14) sketched in Fig. 16. In the second step of 

thermodynamic integration, we charge the solute and counter ions simultaneously 

from  = 0 to 1. The total interactions contain three parts: (1) water-water interactions, 

this should not contribute to the free energy part since it is not directly related to ; (2) 

ion-water interactions, this part is proportional to ; (3) ion-ion interactions, this part 

is proportional to 2. These three parts of the energy are calculated separately in 

simulation (in source code provided in Appendix C). 

( ) ( )Solvation Liquid gasG G R G R   .                        (3-14) 

When we charge the solute, the electrostatic interactions overwhelm the Van der 

Waals interactions between the solute and water molecules. Therefore, the solvation 

free energy becomes negative, and it indicates the solvated state is more favorable for 

a charged solute. For different sizes of solutes, we keep the surface charge density of 

the solute fixed for all sizes of solutes. In the preliminary work, the surface charge 

density is chosen as
o

2 2/ 4 0.02 / 4 AQ R e  , similar to the common surface charge 

densities in biological systems. 

We modified the DL_POLY molecular dynamics package103 to carry the 

molecular dynamics simulations in NPT ensembles with periodic boundary conditions. 

The time step is usually 2 fs. There are multiple modules having been modified to be 

suitable for our research purposes, and a major supplemental module I have written 
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(with Fortran 90 computer language) in addition to the DL_POLY standard package is 

attached in Appendix C. 

 

 

 

 

 

 

Figure 16. Representation of the model system. 

 

 

 

The common treatment for the Coulomb interactions is the Ewald summation 

method104, described in Section 2.1.3 and its extensions such as SPME (Smooth 

Particle Mesh Ewald)105, which have been included in the distributed DL_POLY 

package. However, these methods are still quite computationally expensive. We tested 

a couple of efficient methods in calculating the electrostatic potential to reduce the 

computational cost in the following. 

Solute molecule 
(with positive charge) 

Counter-ion (Cl-) 

Water molecule 

Solute & water system  Reference system (in air) 
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First, we used the “Gaussian Truncation” method developed by Rogers and 

Weeks117, which separates the coulomb interactions (1/r) into short-ranged and 

long-range parts similarly as in Ewald sum treatment. In homogeneous systems, 

Rogers and Weeks suggested that we may not need the long-ranged part because that 

will be averaged out for a uniform background, and all charges should be treated 

equally if one wants to get that nice result of a Poisson's equation defined with a 

smoothed charge distribution118. We treated all the electrostatic interactions 

(water-water, water-ion and ion-ion) in their short-ranged form, the results were in 

good agreement with standard calculations in pure water systems and even 

concentrated aqueous salt solutions. However, when introducing a macro-ion (e.g. 

colloid particle or protein) in solution, using this method became very challenging. 

Due to the non-homogeneous background in electrostatic interactions, the long-ranged 

interactions must be taken into account, and the cost of calculating that part is 

comparable to the Ewald summation treatment. 

Voth and coworkers107 have developed another alternative method for Ewald 

summation to treat the long-range electrostatic interaction with a short-range effective 

potential, they have also successfully extended this method into various 

homogeneously disordered condensed phase systems. Their approach is to fit the 

long-range force from standard simulations of a bulk water system by short-ranged 

functions (usually polynomial functions), using so-called “Force Matching” (FM) 

algorithm, represented in equation 3-15.  



www.manaraa.com

                  52 

 

 2
0

1
( )

N
i

FM core i
i

F r r a r
r 

                               (3-15a) 

2 2

1 1
( ) ( )FM core FM core

core

F r r F r
r r

    ,                 (3-15b) 

r is the distance between atoms, and 0.148nmcorer   is the smallest distance in 

the fitting process. The second term in Equation 3-15a is the polynomial function 

fitting to the long range forces, the parameters for a cutoff distance of 1 nm are listed 

in Table 1.  

 

 

 

 

 
Table 1. Force Matching (FM) parameters for 1 nm cut off (based on the data 
provided in ref 107 
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With the shortened cutoff distance, the force matching methods can save up to 

80% of computational effort compared to the conventional Ewald summation 

algorithm. However, with a large macro ion, we were not able to sustain the short 

cutoff which is essential for its efficiency. With much longer cutoff distance, not only 

the parameters in the Force Matching algorithm need to be carefully re-parameterized, 

the efficiency of the method also declines significantly, and it would eventually be 

comparable to the efforts of Ewald summation.  

Overall, there are difficulties to extend both alternatives into the simulation with 

macro ions, due to the small cutoff requirements in both methods. Although we have 

implemented both algorithms into the DL_POLY package, we still chose to use the 

built-in particle mesh Ewald summation algorithm in our studies. 

The results of electrostatic part of solvation free energy have been summarized in 

Fig. 17. Fig. 17(a) shows the free energy in two states, curve 1 is the free energy 

density in the reference gas phase state and curve 2 is the free energy in aqueous 

solution, which represents the complete solvated state. In Fig. 17(b), curve 3 

represents the solvation free energy from charging the neutral solute, which is the 

difference between the two curves in Fig. 17(a). In curve 3, we can notice that the 

crossover occurs beyond the 1 nm mark, showing that charges on the solute do move 

the crossover up to a larger lengthscale, confirming our predictions. However, the 

increment is not large enough to change the empirical views of free energy estimation 

in biological systems.  
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a)  
 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 17. (a) Curve 1 is for the free energy density in gas phase GGas(R), Curve 2 is 

for the free energy density in aqueous solution GLiquid(R). (b) Curve 3 is the solvation 

free energy density, the free energy difference between two states. The red dashed line 

is a guide to the eye.  
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In these calculations, we kept the thickness of water layers outside the solute as 

constant (20 Å), to have enough solvation shells of each solute. In addition, we 

manage to add in pairs of salt ions to control the Debye screening length of the system, 

which is calculated by  

  1 0
22

r B

A

k T

N e I

             (3-16) 

where I is the ionic strength of the electrolyte, and here the unit should be mole/m3, ε0 

is the permittivity of free space, εr is the dielectric constant of the medium, kB is the 

Boltzmann constant, T is the absolute temperature, NA is the Avogadro number and e 

is the elementary charge. 

 The Lennard-Jones parameters of ions in the system (cations are modeled as Na+ 

and anions are modeled as Cl-) are listed in Table 2, and the number of ions, salt ion 

pairs and water molecules for two different series of systems are listed in Tables 3 and 

4. 

  

 

Table 2. Lennard Jones parameters119 for the ions in molecular simulations 
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Solute Radii 

(Å) 
N counter ion 

Charge/ 

counter ion 

(e) 

N salts (NaCl) Salt charge(e) Nwater 

2 1 0.08 1 0.78 92  

4 1 0.32 2 0.78 195  

6 1 0.72 2 1 356  

8 2 0.64 4 0.9 588  

10 2 1 5 1 903  

12 3 0.96 6 1 1315  

14 4 0.98 10 1 1835  

16 5 1.024 13 1 2478  

18 6 1.08 18 1 3255  

20 8 1 22 1 4181  

22 10 0.968 28 1 5266  

24 12 0.96 36 1 6525  

26 13 1.04 44 1 7971  

28 16 0.98 53 1 9615  

30 18 1 65 1 11471  

 

 

Table 3.  The model systems used in simulation to control the Debye screening 

length at 50.5 Å, and the simulation box size is (2R+10) Å, R is the solute radius. 
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Solute Radii 

(Å) 
N counter ion 

Charge/ 

counter ion 

(e) 

N salts (NaCl) Salt charge(e) Nwater 

2 1 0.08 1 0.45 355 

4 1 0.32 1 0.54 579 

6 1 0.72 1 0.51 873 

8 2 0.64 1 0.59 1243 

10 2 1 0 0 1420 

12 3 0.96 0 0 1898 

14 4 0.98 0 0 3088 

16 5 1.024 0 0 3361 

18 6 1.08 0 0 5056 

20 8 1 0 0 6103 

22 10 0.968 0 0 7275 

24 12 0.96 0 0 8579 

26 13 1.04 0 0 10021 

28 16 0.98 0 0 11606 

30 18 1 0 0 13341 

 

 

Table 4.  The model systems used in simulation to control the Debye screening 

length at 171 Å, and the simulation box size is (2R+18) Å, R is the solute radius.  
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In Tables 3 and 4, we varied the Debye screening length by more than three times 

for two series of systems. However, the solvation free energies are almost identical as 

plotted in Fig. 17 (points overlapped on each other). The reason could be that the 

number of salt ions in the system is much less than the number of water molecules 

(usually smaller than a ratio of 1:100), the majority of the system is made up by water 

molecules and salt ions are not expected to make sizable impact on the solvation free 

energy. On the other hand, no Debye screening factors are considered in the reference 

state (gas phase) of our model, and the free energy in reference states are significant 

compared to the final solvated state (aqueous solutions). Therefore, the macroscopic 

Debye screening length does not alter the crossover lengthscale of the solvation free 

energy (per unit area) at the molecular level as originally proposed. With the 

simulation results, we can conclude that the electrostatic interactions do not 

significantly alter the crossover lengthscales in the solvation processes for our model 

system, and the conventional treatment of the free energy in biological (macroscopic) 

systems is valid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

                  59 

 

Chapter 4. Hydration of and solvent-induced interaction 

between protein surfaces 
 

 As introduced in Section 1.2, the capillary evaporation events in protein systems 

have attracted attentions due to its possible impact in biological processes, such as 

protein folding, protein-ligand binding and protein aggregations. There are two 

requirements for the confinement to induce the evaporation: The surface 

hydrophobicity has to be equivalent to that of a flat surface with water contact angle 

larger than 90 degrees; The grand potential of vapor phase must be smaller than the 

grand potential of liquid phase in confinements (the critical distance for slab geometry 

is described in equation 1-1 in Chapter 1, and the requirements for other geometries 

are demonstrated in Appendix D). However, in protein systems, the surfaces are 

always heterogeneous and the shapes of the surfaces are complicated. There is no 

simple solution to describe the confinements in proteins as those in Appendix D.  

Due to the large sizes and complicated structures, biological systems are usually 

expensive to study in molecular simulations with all the atomistic details. If we are 

only interested in the surface hydrophobic properties on the protein surfaces and 

drying transition of water in the confinements, the coarse grained model can be much 

less detailed. There are amino acid residues exposed on the surface of proteins, some 

of them are hydrophobic while others are hydrophilic, and the hydrophobicity of the 

protein surfaces are mostly attributed to these amino acid residue types. In current 

chapter, we develop a coarse graining approach for both the shape of the proteins and 

the residue-water interactions incorporating a previously developed implicit water 
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model31, 34 in a lattice gas system to study the water evaporation in confined protein 

systems. Our model and parameters are described in section 4.1, results and 

discussions follow in section 4.2 and 4.3, respectively.  

 

4.1. Coarse graining approach 

Various coarse grained models have been proposed over the years for different 

types of systems, and have gained success in predicting thermodynamic properties as 

well as in estimating dynamic information in large scale model surfaces and 

biological systems.34, 40, 64-65 The recent computer simulations have also suggested 

different choices of empirical force fields did not affect the observation of capillary 

evaporation, indicating atomistic details may not be required in predicting evaporation 

events. With these inspirations, we develop a coarse graining model for both protein 

and solvent (water) specialized in probing the capillary evaporation events in the 

confinements of proteins. Obviously, the coarse grained model cannot give detailed 

information at the molecular level (such as single amino acid mutation), but we are 

able to capture the basic physics governing the evaporation process in protein systems, 

and the model is useful as a intermediate step between basic bioinformatics tools and 

studying molecular behaviors of the system. 

 

4.1.1 Lattice gas model of the confined protein systems 

The protein-confined water system is modeled by a three dimensional lattice gas 

system on cubic lattices of size LxLyLz . similar to the general lattice gas model 
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described in section 2.2.1. However, in our system, some sites are fixed to represent 

the surface (protein), and other sites can be occupied either by the liquid or vapor of 

water. The Hamiltonian becomes     

     ,
,

  i j s i j i
i j bulk i surface i

H n n n n  
  

                   (4-1) 

where the first term in the right hand side represents the water-water interactions ni/j = 

0 when the site i/j is occupied by vapor, and ni/j = 1 when the site is occupied by liquid 

water,  is the interaction parameter between neighboring liquid water occupied sites, 

 is the chemical potential. The second term at the right hand side represents the 

surface interaction, the interaction between the surface and neighboring solvent sites 

coupling parameter s,i is in effect when there is a liquid water occupied site j adjacent 

to that surface site i. 

The lattice constant and coupling parameters for the solvent (water) are carefully 

tuned34 to reproduce the thermodynamic properties of water at ambient conditions111, 

113. At room temperature T = 300 K, the isothermal compressibility B Tk T  =0.062, 

pressure P = 1 atm and surface tension of water =70 mN/m, if we adopt the 

reasonable zero temperature approximation, the surface tension was calculated at 

2~ / 2a  . We are using 1.2646 Bk T  , lattice size a = 0.193 nm and chemical 

potential 46 / 2 1.84247 10 Bk T       to ensure that the corresponding lattice-gas 

is at close proximity to liquid-gas coexistence.34 kB is the Boltzmann constant and T is 

the absolute temperature. 
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4.1.2 Coupling parameters for proteins 

The protein structure files (*.pdb) are downloaded from the Protein Data Bank 

(PDB) (http://www.rcsb.org/). We take all the heavy atom coordinates of each amino 

acid residue from the pdb files and represent them by the corresponding lattice sites in 

the three-dimensional lattice gas system (a two dimensional projection of the system 

is sketched in Fig. 18). The shapes of the protein surfaces are conserved with this 

treatment. To be consistent with the solvent model described in previous section, the 

lattice size is set to be 1.93 Å, it is also similar to the resolution of most coordinates 

files in the PDB. Each heavy atom occupies 8 lattice sites (a 2*2*2 cubic) closest to 

its central position, at approximately 58 Å3 in size and the interactions between the 

protein occupied sites and adjacent solvent available sites are converted to lattice 

parameter s in equation (4-2) below, derived from the open, removal and close 

procedures of neighboring lattice positions.24  

G represents the hydration energy for an entire amino acid (the energy of 

moving it out from water into its condensed vapor), taken from the hydrophobicity 

scale of Kyte & Doolittle.120 It is proportional to the energy of “remove an amino acid 

site and close the cavity” in the lattice gas model. z is coordination number, A is the 

exposed surface area for a single amino acid residue121, Lc is the lattice constant34,  is 

the water-water interaction, and s is the water-surface interaction. The energy cost to 

remove one amino acid site in the system is remove sU z     , and the energy to close 

this cavity by a water site is
2close

z
U    , for each amino acid, the removal and 

closure cost can also be written as
2

remove close

z Lc
U G

A


    , and it is equivalent to 
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remove closeU U   , by equalizing these two representations, we can arrive at the 

equation (4-2), to get the surface-water interaction parameter.  

2/ 2 /   s CG L A                                   (4-2) 

 

 

 

 

 

Figure 18. Coarse grained model for water confined between protein surfaces in a 

lattice gas system (projected to two dimensions), the magenta rectangular region 

represents the confined region being studied.   
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From Eq. 4-2, we can calculate the ratio between surface-water interaction and 

water-water interaction s,i/ for all the protein occupied sites, based on which amino 

acid residues each site belong to (Table 5). From the relationship ,
,

1 cos
( )

2
c i

s i


 


 , 

c,i represents the macroscopic contact angle on the surface compromising only one 

component i, we find that only those atoms from five out of twenty types of amino 

acids have an s,i/ value less than 0.5, capable of inducing the evaporation transition 

(macroscopic contact angle of water on the surface is larger than 90o).30, 33 Therefore, 

we would observe the evaporation transition only if there are these five types of 

amino acid residues together on the protein surface to form “hydrophobic patches”.  

As described in Section 1.2, when capillary evaporation is concerned, the 

“hydrophobic” term requires a more stringent definition than the one found in some 

literature.24, 46 The arithmetic mean of all the values of s is assigned to a site if it is 

within the 2*2*2 cubic region of more than one heavy atom in the system. In this 

treatment, if one hydrophobic residue is adjacent to hydrophilic residues, the lattice 

sites at the boundary of both residues would take the arithmetic mean of the s of all 

the residues involved, and most likely will become hydrophilic (s/ > 0.5) It is 

consistent with the idea that hydrophilic site in a hydrophobic sea could turn the 

surface to be hydrophilic and the surface free energy in biological systems is 

non-additive. The hydrophobicity of different types of patches are actually 

anti-cooperative. 87, 122-123 
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Amino acid s/ Amino acid s/ 

Asp 0.836 Pro 0.608 

Asn 0.790 Trp 0.595 

Glu 0.759 Cys 0.523 

His 0.751 Met 0.515 

Gln 0.736 Gly 0.5 

Arg 0.728 Phe 0.495 

Lys 0.690 Leu 0.412 

Ser 0.690 Ile 0.410 

Thr 0.647 Val 0.410 

Tyr 0.614 Ala 0.395 

 
 
 
 
 

Table 5. Surface interactions between solvent and protein occupied sites of different 

amino acids (the amino acid residues have an s/ value less than 0.5 are in bold) 
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4.1.3 Monte Carlo simulations with Glauber & Kawasaki dynamics 

As introduced in section 2.1, there are two types of dynamics to evolve the lattice 

gas system. The liquid water occupied sites in lattice gas can either jump with 

temperature dependent probabilities from one place to an empty neighboring site 

(Kawasaki dynamics110, canonical ensemble), or evaporate and appear with certain 

probabilities (Glauber dynamics109, grand canonical ensemble). The Kawasaki 

dynamics can be used to extract kinetic information from the systems, but due to its 

significantly slower speed, in our studies, we use Glauber dynamics only to determine 

the wettability of the confined region.   

However, we are also interested in the qualitative predictions of the dynamics of 

the capillary evaporation events inside the protein systems at times, then a 

combination of Glauber and Kawasaki dynamics is needed in such studies to make 

close estimations of Monte Carlo simulation cycles to the diffusion constants of water. 

The Glauber dynamics is applied at the interface, where the lattice sites can 

interchange with the external reservoir, and the system is still open to bulk water and 

the pressure is moderate, while Kawasaki dynamics is applied away from the interface 

(within the system) to make mass transportations of water molecules in the 

confinements. The probability of acceptance follows the Metropolis Monte Carlo 

method108. We adapt an algorithm developed by Luzar and Leung31, 34 that combines 

Kawasaki and Glauber dynamics together. By combining of Glauber and Kawasaki 

dynamics together, we could take advantage of both methods. The Glauber dynamics 

is applied at the interface (top part of Fig. 19), as the molecules will interchange with 
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the external reservoir, while Kawasaki dynamics is applied away from the interface 

(bottom part of Fig. 19). The numbers of Monte Carlo cycles are correlated with water 

diffusion time in bulk system and qualitative estimations of the timescales of 

evaporations events are discussed in section 4.2.5. 

 

 

 
 
 

Figure 19. Lattice Gas System, (Top) Glauber dynamics and (Bottom) Kawasaki & 

Glauber dynamics. The blue stripes are fixed sites representing confinement. Filled 

squares are liquid sites and empty squares are vapor sites. The red arrow indicates the 

direction of a Kawasaki move. 
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4.2 Results & Discussions 

4.2.1 Melittin tetramer (pdb id: 2mlt) 

Melittin is extensively studied by researchers, especially in biophysical 

community due to the presence of large hydrophobic patches in both of its dimers21, 

51-52, 66, 124, and it is one of the first natural proteins with capillary evaporation in its 

confinement demonstrated by Berne and coworkers in computer simulations.52 In our 

study, the two dimers are extended by a distance of 4 Å along their centers of mass, 

and the coarse graining approach described in section 4.1 is applied on the system by 

transforming the coordinates of the pdb file into coordinates within a three 

dimensional lattice gas system. All water accessible sites in simulation box were filled 

initially with liquid water before starting the simulation. Firstly, the Monte Carlo (MC) 

method with Glauber dynamics is applied to the system and we record the number of 

water occupied sites during simulation and the ratio of average number of the water 

occupied sites in the confinement to total water accessible sites in the same region at 

the end of the simulation. The system is illustrated in Fig. 20. There is a strong drying 

transition observed in the confinement of melittin tetramer.  
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Figure 20. Evaporation in melittin tetramer system: (a) two melittin dimers (2MLT), 

green represents atoms from hydrophobic residues and other colors represent atoms 

from hydrophilic residues ; (b) the whole simulation box; water occupied sites are in 

red, protein occupied sites are in blue and empty sites are in green for visualization 

purpose. (c) The confined region highlighted in (b).  
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The ratio between the number of water occupied sites during the simulation and 

total number of water accessible sites is plotted in Fig. 21, during each Monte Carlo 

cycle, on average, every water accessible site is picked once for a trial move (either 

accepted or rejected). We should notice that in our model, we only take the nearest 

neighbor interaction into account (Eq. 4-1), by design, we would not observe a 

complete drying cavity due to the lack of long range interactions. There are always 

water occupied sites staying around the hydrophilic protein sites (s/ > 0.5), and we 

cannot exclude those sites while counting the number of water occupied sites in that 

particular region. Nevertheless, we are able to observe a substantial ratio of water 

occupied sites evaporated during the simulation, and we can conclude there is a 

capillary evaporation occurring in this confinement from the observation. In melittin 

tetramer system, we record a ratio of remaining water occupied sites to the total water 

available sites at around 25%, it indeed demonstrates a strong drying transition in that 

system. Normally, if the ratio is less than or around 50%, we can already observe the 

capillary evaporation, it is an arbitrary threshold that the water density inside the 

confinement reduces to about half of the bulk density. 

Due to the resolution of the coarse grained model, it is hard to conduct the studies 

at molecular scales as in MD simulations. For example, we cannot evaluate the effects 

of single amino acid mutations to capillary evaporation in the melittin tetramer system, 

which have been successfully studied in the MD simulation.52   
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Figure 21. The ratio of number of water occupied sites (Nc) to total number of water 

accessible sites (NT) in the confinement of melittin tetramer during the MC 

simulations. Red line represents the average ratio and the black line represents the 

instant ratio during the simulation. (Inset) The same ratio during the first 300 MC 

cycles. 
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The melittin tetramer is unique among many proteins with large hydrophobic 

surfaces. There is a strong drying transition in the confined region of the system. The 

relatively flat shape of the melittin dimers which form the confinement also facilitate 

the further studies to this particular protein.66 With a similar procedure of 

Giovambattista et al66, we were able to flatten the melittin dimer surface to study the 

chemistry part of the melittin dimer surface, the flattening procedures and contact 

angle measurements will be described in details in Chapter 5. Despite the fact that the 

entire flattened melittin dimer has a water contact angle at ~20o, well below 90o, 

indicating a very hydrophilic surface overall, we demonstrated the same dimer surface 

indeed has a central portion with water contact angles ~113o, above 90o, which is a 

necessary condition for water evaporation.122 Our virtual contact angle measurements 

unveiled that both surface chemistry (hydrophobicity) and shape of the proteins are 

important in motivating the evaporation inside the melittin tetramer, especially, the 

evaporation transition only becomes possible when there is certain part of the surface 

that forms the confinement with water contact angle larger than 90 degrees, in 

agreement with the theoretical definition of capillary evaporation.33 A snapshot of a 

sessile water nanodrop on top of a surface constructed by the central hydrophobic 

regions of melittin dimer surface is shown in Fig. 22. 
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Figure 22. Nanodrop geometry used in water contact angle calculations on a surface 

constructed by central region of melittin dimer surface (details in text and in Chapter 

5). The grey color represents surface from hydrophobic residues, green represents 

surface from hydrophobic residues. In the drop, red spheres represent water oxygen 

atoms and white spheres represent water hydrogen atoms. 
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4.2.2 Additional dimer, tetramer and multi-domain proteins 

Additional proteins with confined region constructed by matched large and 

connected hydrophobic patches, according to the screening method reported by Hua et 

al.51 are addressed by our methods in this section. Similarly, we chose the top 

candidates in each category including 10 tetramers, 20 dimers and 20 multi-domain 

proteins, and separate the two oligomers/domains which form the confinement by an 

additional 4~6 Å from their centers of mass distances. The results for the proteins 

identified to have evaporation transitions are summarized in Table 6.  

Our model picked out the same set of proteins having demonstrated evaporation 

transitions in all atom simulations. Coarse-graining of protein and solvent 

qualitatively reproduces results from atomistic simulation. In Table 6, we have 

included several protein systems (pdb IDs: 1g5y, 1fe6, 1k2e, 1m4i) with high scores 

in the screening functions from Hua et al51, but did not show capillary evaporations in 

their computer simulations. We recorded the remaining water ratios well above the 

50% threshold, which means no evaporation with our model either, consistent with 

the simulation studies. The 2D protein (pdb ID: 1QP6) was evaluated by Huang et 

al125 in an earlier simulation study to show capillary evaporation with certain 

distances between its two polypeptide chains, we recorded a remaining water ratio 

~54%, it is on the limit of evaporation in our model. A more complete list of protein 

systems we have studied are documented in Appendix E. 
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PDB ID Category Ni Nr 
2 2N N

N

    
 

 Nr/Ni% 

1j2w tetramer 45 21.2 2.64  47  
1j3q dimer 49 23.7 1.00  48  
1f4n dimer 23 10.8 0.74  47  
1g6u dimer 28 15.4 1.18  55  
1d1g dimer 23 9.3 1.31  40  
1fsz Multi-domain 38 17.2 1.57  45  
1g5y tetramer 57 53 1.77  93  
1fe6 tetramer 41 31.8 0.21  78  

1QP6 125 dimer 38 20.4 1.33  54  
1k2e dimer 44 28 0.76  64  
1m4i dimer 43 34.8 0.28  81  

 

 

Table 6. Additional dimer, tetramer and multi-domain proteins identified for capillary 

evaporation. Ni represents the initial number of water occupied sites in the 

confinement, Nr represents the remaining number of water occupied sites in the 

confinement. The proteins shown capillary evaporation in computer simulations are in 

bold fonts. The fifth column represents a column similar to compressibility of water 

inside the confinement. The rows with bold fonts represent the protein systems 

identified to exhibit capillary evaporation in molecular simulations 
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4.2.3 Protein cavities and dry ligand binding sites 

Ligand binding sites in protein complexes are related to the local hydrophobicity 

of the proteins. Ligands usually replace the water in the active binding sites, and if the 

binding sites are predetermined to be dry, the binding affinity will be large. Bovine 

β-lacto-globulin (BLG) was identified to have a dry cavity for ligand binding with 

both simulation and experimental proofs.126 The ligand binding calyx is made up of 

12 aliphatic residues and one aromatic residue.127 The calyx has a sufficient amount of 

hydrophobic patches. By identifying the calyx in the coordinates, we used our coarse 

graining method to transform the protein into lattice sites, assigned all water occupied 

sites with liquid water inside the cavity initially, and evolved the system with the 

Monte Carlo method. The number of water occupied sites inside the cavities is 

tracked during the simulation. (shown in Fig. 23) In the end of the simulation, we 

record a ~30% of the water accessible sites are occupied by water, which in our model 

demonstrates a strong evaporation transition. 

The dry ligand binding cavity does not only exist in Bovine β-lacto-globulin 

complex. Young et al62 employed similar criteria as Hua et al 51 to screen ~1,800 

protein-ligand binding systems and tested the top 15 candidates in all atom 

simulations. They demonstrated that six out of the fifteen proteins have a drying 

cavity in addition to the previous defined Bovine β-lacto-globulin.  

We apply the same coarse-grained procedures as described in previous section to 

study the top candidates of the protein-ligand binding systems. The results for these 
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systems are summarized in Table 7. Our coarse grained model again identified the 

same proteins having dry cavities as in all atom simulations. 

 

 

 

 

Figure 23. Number of water occupied sites in the confinement of Bovine 

β-lacto-globulin during the MC simulations. The ratio of number of water occupied 

sites (Nc) to total number of water accessible sites (NT) in the confinement of melittin 

tetramer during the MC simulations. Red line represents the average ratio and the 

black line represents the instant ratio during the simulation. (Inset: ribbon 

representations of Bovine β-lacto-globulin protein, red color strips indicate the 

position of the cavity.) 
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PDB ID Ligand Ni Nr 
2 2N N

N

    
 

 Nr/Ni% 

1e7g MYR_A1008 25 10.7  1.61  43  

1y9l UND_150 34 16.7  2.50  49  

1wbe DKA_A1001 24 11.9  1.49  50  

1wub OTP_1001 67 24.9  1.67  37  

1rbp RTL 49 26.1  2.88  53  

1lid OLA_132 55 43.5  0.68  79  

1cvu ACD 46 20.6  2.24  45  

1dbj AE2 37 31.9  0.30  86  

1ure PLM_132 20 13.5  0.71  68  

1g74 OLA_132 48 36.9  0.82  77  

 
 
 

Table 7. Additional protein-ligand systems tested in coarse-grained model. Ni 

represents the initial number of water occupied sites in the confinement, Nr represents 

the remaining number of water occupied sites in the confinement. The proteins shown 

capillary evaporation in computer simulations are in bold fonts.  
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4.2.4 Dynamics information 

Within our lattice gas model, we are able to obtain qualitative dynamic 

information of the drying transition from an algorithm developed by Luzar and 

Leung34 to combine Glauber109 and Kawasaki110 dynamics in our simulation.  

To study the relaxation time of fluctuations at equilibrium, we determine the 

density time correlation functions,   

          (4-3) 

where N(t) is the number of water occupied sites inside the confined region at time t 

(represent by the number of Monte Carlo cycles). The density time correlation 

function (Eq. 4-3) with both Glauber and Kawasaki dynamics for the melittin dimer 

confined region after equilibration is plotted in Fig. 24.  

By calibrating the number of Monte Carlo passes in Kawasaki dynamics with the 

water diffusion constant34, with the relation 26 | |Dt R   at long time, where D is the 

diffusion constant of water, and 2R is the mean square displacement during the time 

t, we extract a rough estimation of the time scales of the fluctuation. During the short 

time scale, the relaxation is not linear in the semi-log plot (Fig. 24 top), we extracted 

the dynamics by integrating the function C(t) for the first 1,000 MC cycles, and the 

relaxation time is ~100 Monte Carlo cycles in Kawasaki dynamics, which is 

approximately equivalent to ~5 ps in real time in this system. 

On the other hand, the MC simulation with Glauber dynamics gives a much faster 

decay (Fig 24 bottom) in ~4 MC cycles by integrating the C(t) for first 1,000 MC 

cycles. Here, we compare the two dynamics and find the Kawasaki dynamics runs 
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much slower in timescales than the Glauber dynamics, for the small system, 

25* ~Glauber Kawasaki   according to the relaxation of density time correlation functions 

calculated in two methods, coincides with the previous studies by Leung and Luzar31, 

34.   

It is actually impractical to use Kawasaki dynamics only when all of the sites are 

filled in with water initially. Therefore, we studied the actual capillary evaporation 

time in Glauber dynamics only, and the relation between the time scales in Kawasaki 

dynamics and Glauber dynamics has been applied. From Fig. 21, the estimated 

evaporation time of confined water is ~200 MC cycles with Glauber dynamics, is 

equivalent to ~5,000 MC cycles with Kawasaki dynamics, and ~250 ps in real time, 

which is of the same magnitude as that determined by all-atom Molecular Dynamic 

simulations.52 

We also tried to relate the “pseudo mean square displacements” in Glauber 

dynamics directly with the water diffusion. We counted the number of Monte Carlo 

passes needed for one accepted deletion and one sequential accepted addition in the 

simulation as the time t, and recorded the distance between the deletion site and the 

addition site as the displacement 2R , and from the diffusion equation, interestingly, 

we get a similar time scale as we determined from a combination of Kawasaki and 

Glauber dynamics together. 
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Figure 24. Density time correlation function of water occupied sites inside the 

confinement of melittin tetramer (pdb id: 2mlt) with Kawasaki dynamics (top) and 

Glauber dynamics (bottom). (Insets: A semi-log plot for the correlation function 

during the short timescales)  
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Furthermore, the density time correlation function for water occupied sites in the 

binding sites of Bovine β-lacto-globulin calculated in MC simulation with Glauber 

dynamics is plotted in Fig. 25. The relaxation time is ~10 MC cycles by integrating 

the first 200 MC cycles, and it corresponds to a real time less than ~10 ps in this 

particular system, coincides with the findings in all-atom simulation126 that the water 

molecules came out of the region within the equilibration stage (if they were initially 

put inside the cavity). 

 

 

 

Fig. 25 Number correlation function of water occupied sites inside the cavity of 

Bovine β-lacto-globulin (pdb id: 3blg). (Inset: the semi-log plot for the correlation 

function at short times.)  
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4.3 Conclusions 

Coarse graining procedures are among the choices to study large systems, e.g. 

proteins. The idea is to use cruder models for atoms or atomic groups, and use 

averaged interactions between these groups. Previous successes in coarse grained 

model predictions of water behavior in the confinements of model hydrophobic 

surfaces 30-31, 34, hydrophobic tubes40 imply the thermodynamics of water can be 

captured without detailed atomistic information (such as empirical force fields). In 

this study, we were able to predict thermodynamic behavior of water confined in 

protein systems (dry or wet), as well as qualitative information about the dynamics of 

the drying transition when it happens, using a computational-efficient coarse grained 

model. Although these are qualitative estimations for the timescale of the drying 

transition, we were able to relate our Monte Carlo (MC) simulation results with the 

all-atom Molecular Dynamics (MD) simulation results at a much less computational 

expensive way. We also interpreted the origin of the evaporation inside the melittin 

tetramer system in terms of the microscopic analog of macroscopic contact angles37. 

We can conclude that for evaporation transition, what really matters is the protein 

surface topology and the macroscopic thermodynamic properties of the solvent, the 

atomistic details such as empirical force fields are not crucial in the model.  

As pointed out previously by different research groups,8, 66 the water drying 

transition is not merely determined by the chemistry or the geometry of the protein 

system, but the combination of these two factors. While the simple screening method 

51, based on the hydrophobicity of amino acid residues exposed on the surfaces, left 
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out the geometric factor, we used a slightly more detailed model but incorporated both 

the protein shape and the protein-water interactions. We demonstrated that we can 

predict the dry/wet confinements and cavities in protein systems when only the 

thermodynamics are important. In addition, we were able to obtain the rough 

estimation for the dynamic information as well by combining two techniques in the 

Monte Carlo simulations and relate the Monte Carlo steps to water diffusion time.  

Our model is especially useful in a quick test of a protein system to determine 

whether the capillary evaporation is possible. Combined with the screening method 

developed by Berne and coworkers51, our method can serve as an intermediate step 

between the initial screening and extensive studies for the molecular details (i.e. 

single mutation studies of amino acid residues52). The coarse graining model is 

sufficient when one is only interested in the thermodynamics property of water inside 

the confinement system. It captured the basic physics of the water evaporation 

processes in these confined or cavity regions. 
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Chapter 5. Wetting behavior of heterogeneous surfaces 

 

Surface free energy of a chemically heterogeneous surface is often treated as an 

approximately additive quantity through Cassie equation.71 However, deviations from 

additivity are common and molecular interpretations are still lacking. In current 

chapter, we use molecular simulations to measure the microscopic analogue of contact 

angle, c, of aqueous nanodrops on heterogeneous synthetic and natural surfaces as a 

function of surface composition. The synthetic surfaces are comprised of graphene 

functionalized with prototypical nonpolar and polar head group: methyl, amino and 

nitrile. We demonstrate positive as well as negative deviations from the linear 

additivity. We show the deviations reflect the uneven exposure of mixture components 

to the solvent and the linear relation is recovered if fractions of solvent accessible 

surface are used as the measure of composition.  

As polarity fluctuations on the surface intensify, the linear relation can no more 

be obtained. Protein surfaces represent such natural patterned surfaces, also 

characterized by larger patches and roughness. Our calculations reveal strong 

deviations from linear additivity on a prototypical surface comprising surface 

fragments of melittin dimer. The deviations reflect the anti-cooperative influence of 

polar patches, their preferential wetting, and changes in the position of the liquid 

interface above hydrophobic patches. Since solvent-induced contribution to the free 

energy of surface association grows as cosc, deviations of cosc from the linear 

relation represent a direct measure of nonadditivity of surface biointeractions. 
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This chapter is organized as follows: in the first two sections we describe model 

systems with patches sizes at molecular scale (synthetic surfaces) and nanoscale 

(natural protein-like surfaces), and present results for wetting surface free energies as 

a function of surface composition. In Discussion we show the impact of solvent 

accessible surface areas replacing the mole surface fractions on results presented in 

previous sections. The conclusions follow.  

 

5.1 Synthetic surfaces with patches at molecular scale 

5.1.1 Model surfaces 

We start with surfaces constructed by planting molecular groups on molecularly 

smooth surfaces. The model surfaces are designed as functionalized graphene sheets 

with surface groups of different polarities, previously considered in studies of wetting 

on mixed SAMs. 74-77, 83-84, 128 We choose this rigid substrate to focus on the influence 

of mixed surface chemistry, decoupled from topography changes involved in wetting 

of flexible SAM deposits. Carbon atoms, packed into hexagonal graphene lattice, are 

characterized by Lennard-Jones parameters (summarized in Table 8) adjusted 

following Werder et al 129 to give contact angle of ~ 108o, close to experimental 

values of graphene 130-131 and hydrocarbon. Prototypical surface groups, -CH3, -NH2 

and -CN, are planted on the lattice with density (~21 Å2
 per group) comparable to that 

achieved in SAMs experiments. 74-77  

While we make no explicit assumptions about the pH of the drop, amino groups 

are presumed to remain nonionized. For a small, approximately 2000 water molecule 
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nanodrop, ionization of a single NH2 group under the drop via NH2+H2O -> NH3
+ + 

OH- elevates pH from initial value of around 7 to more than12, way above the group 

pK. Ionization is therefore not significant at given conditions. Force fields we use are 

given in Table 8. We compared results obtained by using Lennard-Jones parameters 

and partial charges of surface groups from three different force fields, CHARMM 

v2796, Amber Parm-9495 and OPLS-AA97.  

 

 

Atom Å (kcal/mol)
Partial  

charge (e) 
C(Graphene)129 3.214 0.0361 0 

OPLS-AA97 

C(-CH3) 3.5 0.066 -0.18 
H(-CH3) 2.5 0.03 0.06 
N(-NH2) 3.25 0.17 -0.7 
H(-NH2) - - 0.35 
C(-CN) 3.3 0.066 0.46 
N(-CN) 3.2 0.17 -0.46 

Amber95 

C(-CH3) 3.816 0.1094 -0.18 
H(-CH3) 2.974 0.0157 0.06 
N(-NH2) 3.648 0.17 -0.84 
H(-NH2) 1.2 0.0157 0.42 

CHARMM96 

C(-CH3) 3.670 0.08 -0.27 
H(-CH3) 2.352 0.022 0.09 
N(-NH2) 3.296 0.2 -0.80 
H(-NH2) 0.4 0.046 0.40 

 

Table 8. Force fields used for surfaces head groups 
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5.1.2 Water Contact Angle Calculations 

To estimate the deviations from linear additivity, we study wetting free energies, 

quantified in terms of microscopic analogues of water contact angle67. We use water 

drops comprising 2,000 SPC/E98 water molecules to measure the microscopic analog 

of the macroscopic contact angles on the surface. The computer simulations are 

carried out by the LAMMPS molecular dynamics package102 in NVT ensemble with 

Nose-Hoover thermostat.132 We use periodic boundary conditions and extra space in z 

direction (300 Å) to avoid interact ions with system’s images in z direction. The 

long-range electrostatic interactions are treated by SPME (Smooth Particle Mesh 

Ewald Sums) method.133 Each system is equilibrated for at least 500 ps, and typically 

run by additional 5 ns to secure contact angle convergence. For very hydrophilic 

surfaces, production runs of up to 10 ns were made. We record the trajectories with 1 

ps interval. The contact angles are computed from circular drop contours extrapolated 

to substrate surface. We adopt the drop analysis technique of de Ruijter et al134 further 

developed by different groups129, 135 

In each recorded MD simulation configuration, cylindrical binning has been 

introduced to get the water drop isochors, and the surface normal through the center of 

mass of the droplet is used as reference axis. The bins have a height of 0.5 Å and the 

radial bin boundaries are located at /ir i A  for i = 1,…, Nbin with a base area per 

bin of 80A  Å2, so that all bins contain the same volume. From such a profile, the 

equimolar dividing surface is determined within every horizontal layer of the binned 

drop, and a circular fit through these points is extrapolated to the reference plane to 
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measure the contact angle. The z axis position of the reference plane is determined by 

averaging the effective heights of each atomic group.  

For hydrophilic surfaces, the drop becomes asymmetric, and the spherical shape 

of the drop may not be guaranteed. We modify our technique by adapting the method 

developed by Toxvaerd and coworkers136，where we determine the center of mass of 

each horizontal layer individually, and average over all the configurations first, then 

calculate the equimolar dividing surface accordingly. The rest of the procedures stay 

the same as described above. However, this treatment gives the contact angle of our 

hydrophilic surfaces within the error bars of the results from original method. To be 

consistent, we keep the traditional method for all surfaces. Typical drop contour 

profiles of different types of surfaces are shown in section 5.2.1. (Fig. 36) 

To check for possible droplet size dependence, we also performed test runs with 

water drops containing 4000 water molecules on a four times larger surface, and 

found no significant differences in contact angles. Further, for methyl-covered 

substrate, we calculated the wetting free energy of semi-infinite surfaces using planar 

confinement geometry with lateral periodicity. We used Grand Canonical Monte Carlo 

simulations to determine the amount of water between the interfaces. Thermodynamic 

integration was carried out to obtain the wetting free energy , and water surface 

tension, , was obtained by the pressure tensor method137. The Young contact angle 

cos-1(-) agreed within 3-5o with the value obtained from the nanodroplet geometry. 

The details of these calculations are discussed in Appendix F. 
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5.1.3 Simulation Results 

We list the calculated contact angles on pure surfaces (functionalized by groups 

of a single type) in Table 9; we also include experimental water contact angles on 

SAMs with the same end groups.74, 77, 138, 139 In separate calculations, SPC100 and 

TIP3P99 water models revealed no significant differences in contact angles from those 

observed with SPC/E98 water model. 

The water contact angles on the hydrophobic surfaces (-CH3) are robust with 

various force fields, while contact angles on hydrophilic (-NH2) surfaces appear 

sensitive to the force field choice. In particular, with OPLS-AA force fields, the 

contact angle of -NH2 surface is too low compared to the experimental results. This is 

due to the lack of Lennard-Jones parameters on the hydrogen atoms of -NH2 groups, 

allowing water molecules to approach -NH2 groups too closely.  

In addition, the line tension effects are evaluated for the nanoscopic droplets to 

compare to the macroscopic observed contact angles  based on the empirical 

relation  

1
cos cos

Br

 
          (5-1) 

where is the line tension, is the water/air interfacial tension and rB is the contact 

radius of the droplet. The line tension is predicted to be at the value of 10-10 N in 

literature69, 83, 129, the hydrophobic contact angles are overestimated by ~5 degrees and 

the hydrophilic contact angles are underestimated by ~10 degrees from the molecular 

simulation, which coincides with our observed contact angles comparing to the those 

reported in experiments (Table 9). 74, 77, 138, 139  
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 OPLS-AA CHARMM Amber Experimental (refs) 

-CH3 109 o 106 o 109 o 107o 138/112o 139 

-NH2 18o 32 o 36o 43o 138 / 50o 77 

-CN 50o - - 61o 74 /63o 139 

 

Table 9. Contact angles on homogeneous surfaces 

 

 

In the rest of this chapter, we focus on the results with Amber force fields when 

-NH2 groups are involved, because they reproduced best the experiment on -NH2 

functionalized surfaces. Parameters for the nitrile group are available only in 

OPLS-AA force fields and we use these when -CN moieties are involved.  

We mix the small groups on the surfaces with a bias toward alternations, 

minimizing the number of contacts between surface groups of the same type. The 

cosines of contact angles on mixed methyl/nitrile surfaces shown in Fig. 26 Left 

reveal positive deviations from the linear dependence on the fractional area of methyl 

groups, fCH3, similar to those observed in experiments with methyl/nitrile terminated 

SAMs deposits74. The plot of cosine of contact angle vs. fCH3 on methyl/amino 

surfaces (Fig. 26 Right) reveals a distinctly different composition-dependence. Here, 
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the cosine of contact angle deviates from linear additivity in the negative direction. 

When fCH3 exceeds ~30%, the surfaces are more hydrophobic than predicted by the 

Cassie equation, Equation 1-3.  

 

 

 

 

Figure 26. Cosine of contact angle on mixed -CH3/-CN (left) and -CH3/-NH2 (right) 

surfaces as a function of fractional area of methyl groups. Solid circles: simulation 

results, Open squares: results with larger patches (4x4 head groups) black dashed line: 

linear additivity approximation due to Cassie (Eq. 1-3), blue dotted line: 

approximation from Israelachvili and Gee. (Eq. 1-4) 73 Error bars are comparable to 

the size of the symbols. Insets: Model surfaces covered with -CH3 groups (upper left), 

-CN groups (lower left), and -NH2 groups (upper right) The underlying graphene 

surfaces are shown in cyan color, C atoms in small groups are lime, N atoms are blue, 

and H atoms are white.  
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Actually, notwithstanding the differences in parameters of different empirical 

force fields, for all three force fields we find similar deviations from linear additivity 

of cosc on mixed -NH2/-CH3 surfaces, showing that the interfacial free energy 

additivity itself is virtually insensitive to force field choice (Fig. 27). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 27. Cosine of contact angles on mixed -CH3/-NH2 surfaces as a function of the 

mole fraction of substrate surface covered by -CH3. The dashed lines are the Cassie 

prediction71 with all the force fields we tested in our studies. 
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Experiments on methyl/amino terminated SAMs deposits featured nearly linear 

dependence with slight positive deviations in cosc 
77. We attribute the excessive 

hydrophobicity on functionalized graphene to partial shielding of amino groups by 

bulkier methyl groups. In SAM deposits, on the other hand, chain flexibility generally 

facilitates exposure of polar moieties83. For example, dry OH-terminated SAM chains 

extend to a lower height than methyl-terminated ones, however, under the drop they 

outstretch their nonpolar counterparts to facilitate wetting 83. Israelachvili and Gee 73 

approximation predicts positive deviations. As illustrated in Fig. 26, this 

approximation shows a qualitative agreement with experiment and simulation on 

methyl/nitrile surfaces while by design it cannot capture negative deviations. 

Negative deviations of cosc from linear dependence have also been observed in 

experiments with SAMs of octadecylphosphonic acid82, however, the lack of 

microscopic insight into experimental surfaces precluded molecular interpretations. 

We take advantage of our simulation setup to look into the details of water structure 

next to model surfaces to unveil essential differences between mixed and 

homogeneous systems (end-points in Fig. 26).  

In Fig. 28, we present the running coordination number per unit area, Nc(z),  

for water molecules next to solvated surfaces; here, b is the 

bulk number density of water, z is the distance from the substrate carbon atom layer 

and gw(z) the wall/water distribution function. We consider pure surfaces and 

equimolar mixtures (fCH3=50%). On pure hydrophilic surfaces, a fraction of water 

molecules is shown to penetrate partially between -NH2 or -CN groups, approaching 
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C
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the underlying carbon layer. Substitution of only half of -NH2 or -CN groups by -CH3 

groups suffices to exclude water molecules from the first solvation layer. As shown in 

the inset of Fig 28, the net exclusion from the -NH2/-CH3 mixture is about twice 

bigger than from the -CN/-CH3 one. 

 

 

 

 

 

Figure 28. Running coordination numbers of water on surfaces with different groups. 

Inset: the differences in running coordination numbers between mixed -NH2/-CH3 

surface and pure -NH2 surface (blue), and between mixed -CN/-CH3 surface and pure 

-CN surface (magenta).  
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 Figs. 29 and 30 illustrate the profiles of the average number of hydrogen bonds 

per water molecule, nHB(z), and the average orientation of water dipole, ( )z , along 

z direction.  

 

 

 

 

Figure 29. Average number of hydrogen bonds per water molecule as a function of 

the distance from the functionalized graphene surface. 
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Figure 30. Averaged dipole orientations of water molecules near the functionalized 

substrate surface. (The surface is on the left) The sketches of water molecules show 

preferred molecular orientations near pure -CN (top) and -NH2 (bottom) surfaces. 
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A significant reduction in nHB(z) is observed near the pure -CN surface (Fig. 29) 

as orientational ordering of water dipoles by strongly polar -CN groups interferes with 

hydrogen bonding (Fig 30). A weaker influence is induced by -NH2 groups. When 

-CH3 groups are planted on the -NH2 surface, profiles nHB(z), and ( )z approach the 

profiles characteristic of pure methyl-covered surfaces. At equimolar -NH2/-CH3 

composition, the change in both quantities is nearly completed. At 50% methyl/nitrile 

surface, on the other hand, water properties remain under strong influence of nitrile 

groups. This picture is reinforced by angular distribution functions of water dipoles 

shown in Fig. 31. The dipole distribution of water molecules near hydrophobic pure 

-CH3 surface is in good agreement with simulations on SAMs surface with the same 

head group140, and the polarity of groups -CN and -NH2 are large enough to affect the 

water dipole orientations near these surfaces.  

The distribution of water dipole orientations next to the surface covered by 

equimolar mixture of -CH3 and -NH2 groups is very close to that of pure -CH3 surface 

and different from that at pure -NH2 surface. While the peaks at the mixed -CN/-CH3 

surface are shifted away from the peak position of the pure -CN surface, the average 

orientation appears to be similar in both cases, in contrast with the behavior of the 

-NH2/-CH3 mixed surfaces.   
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Figure 31. Distribution of dipole orientation at the graphite surfaces functionalized by 

different head-groups.  
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In the bulk, water forms a roughly tetrahedral hydrogen bonding network, with 

each water molecule averaging about 3.4 hydrogen bonds to its neighbors. At the 

interface, the hydrogen bonding network is significantly perturbed.11, 16, 18 

Concomitant disruption of tetrahedral coordination at our model surfaces is described 

in Fig. 32.  

The perturbations of the hydrogen bonding network can be quantified in terms of 

the ability of water molecules to maintain tetrahedral coordination. In Fig. 32, we plot 

the distributions of the O-O-O angles of water triplets near various surfaces. 

The distribution is defined by Equation 5-1, similar as in ref 141.  

2 2 2

1 1

{cos } ( cos )
2 | |

iji
nn

ij ik jk

i j k j ij jk

r r r
P a

r r
  

  

 
     (5-1) 

P is the probability, a is the normalization factor, r is the distance between water 

molecules  and . 

Here, the sum goes over all water oxygen triplets located within the interface and 

satisfying O-O distances that permit H-bond formation. In pure water, the distribution 

P(cos o-o-o) features a broad peak around cos ~ 0.3o o o    when water molecules are 

forming tetrahedral networks, while a small peak at half lower angle corresponds to 

interstitial water molecules not in tetrahedral formation142. At the surfaces, the 

tetrahedral network is partially disrupted with shifts of the large peaks to lower angles 

(less negative coso-o-o); at the same time the interstitial water peaks rise, indicating 

more water molecules lack tetrahedral coordination.  
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Figure 32. Distribution of O-O-O angles in triplets of water molecules (defined in 

equation 5-1). 
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Among all types of surfaces we study, the O-O-O angles’ peak shift is most 

pronounced at the surface covered by -CN groups (indigo curve in Fig. 32), consistent 

with our observation of the reduction in the average number of hydrogen bonds of 

water molecules near that surface (Fig. 29). We note that, by limiting the statistics to 

water triplets with O-O distances within the hydrogen bond length of up to 3.5 Å, a 

larger fraction of water molecules outside the hydrogen bonded network remain 

unaccounted for. Inclusion of these water molecules would enhance the measured 

extent of the disruption of tetrahedral coordination in interfacial water. 

Overall, the rapid change in surface character, observed when methyl groups are 

replacing amino groups, is consistent with reduced exposure of smaller -NH2 groups 

as they become surrounded by -CH3 ones. The taller -CN groups, on the other hand, 

protrude above surrounding methyl groups. The enhanced role of methyl groups in 

-CH3/-NH2 mixtures, and that of nitrile groups on -CN/-CH3 surfaces, are consistent 

with observed deviations in the cosine of the contact angle on mixed surfaces. 
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5.2 Natural surfaces with patches at nanoscale 

Biological surfaces comprise ingredients with widely varied hydration affinities. 

Protein surfaces present a well-known example despite preferred exposure of 

hydrophilic groups. The overall surface energetics will only approximately follow the 

sum of all component contributions35, 123. As with molecularly mixed surfaces, we 

examine the (non)additivity of wetting free energy on heterogeneous protein surfaces 

by calculating microscopic analogues of water contact angle67, 135 as function of 

surface composition. The repeating units of the surfaces are two different surface 

patches of melittin dimer, a well-characterized protein8, 66 with regions of contrasting 

polarities. The crystal structure is provided from the Protein Data Bank (PDB ID: 

2MLT)124. 

The patch of type A is a bigger nanosized area of the dimer comprised of 

amino-acid residues 2-20 of both monomers (Fig. 33), which includes a hydrophobic 

pocket flanked by predominantly polar residues. As such, surface A is representative 

of typical water-soluble proteins. The second surface type, B, mimics the nanosized 

hydrophobic pocket carved from the central region of fragment A. The comparatively 

flat fragment comprises atoms from four residues, including two complete LEU13 

residues on both monomers and represents the most hydrophobic area on melittin66; it 

is situated in the central region between adjacent melittin dimers forming a tetramer. 

The sizes of patches A and B are approximately 1.4x2.5 nm2, and 0.7x0.8 nm2, 

respectively. The third patch type, C, is a hydrophilic fragment of size equal to that of 

type B, carved out of patch A to enable studies of patch size effects.  
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Figure 33. Melittin-based surfaces comprising protein fragments of chosen type: (top) 

2MLT (melittin dimer): the part inside the red rectangle represents a patch of type A; 

the part inside blue rectangle represents a patch of type B. (bottom left) Randomized 

hydrophilic surface comprising flattened and replicated patches of type A. (bottom 

right) Randomized hydrophobic surface prepared by replicating patches of type B. 

(bottom center) Randomized mixed A/B (50/50) surface prepared by mixing patches 

of type A and equal-size domains of six smaller patches B. Grey color represents 

hydrophobic residues; other colors represent hydrophilic residues. Among the latter, 

green color denotes neutral and hydrophilic and blue means basic and hydrophilic. 
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To characterize the wettability of selected surface fragments in terms of contact 

angle, we unravel the native “cupped” configuration of the fragment. We follow the 

procedure developed by Giovambattista et al.66 in which the protein interface was 

geometrically modified by shifting residues along the inter-dimer direction so that the 

contact interface between dimers became flat, while preserving the characteristic 

chemistry. After we download the pdb file of melittin dimer (2MLT), we take all the 

coordinates of C position of the surface hydrophobic residues in 2MLT (melittin 

dimer) from the PDB, and fit all these positions into a plane. Then we find a rotation 

matrix to rotate the plane parallel to the xy plane of the coordinate system, for every 

amino acid residue, we measure the closest distance from the atoms within the residue 

to the plane (now parallel to the xy plane, so the distance equals to the distance along 

the z-axis). Then move each atom within the residue the same distance toward the 

plane. As a result, the closest atom will be on the plane, we can get a roughly planar 

surface. (See in Fig 34.) 

 

 

      Figure 34. Flatten the melittin dimer surface 
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We use the CHARMM v2796 force field which is widely accepted in reproducing 

the bonding and non-bonding properties of biological systems. The electrostatic 

potential maps in Fig. 35 were calculated with APBS program143, in analogy with 

ref66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Solvent accessible surface area 

(SASA) colored by electrostatic potential 

for (top) original melittin dimer (2MLT); 

(middle) the truncated melittin dimer and 

(bottom) flattened, truncated melittin dimer  

The coloring gradient ranges from -5kBT/e 

(red) to 5kBT/e (blue). The electrostatic 

potentials at each grid are calculated in 

APBS program and the figures are 

produced by VMD software. 
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We use patches of types A, B, or C as building blocks of larger, approximately 

square-shaped surfaces designed by patch replication. The final surfaces of side length 

~14 nm are sufficiently big to accommodate nanosized droplets (containing around 

2000 water molecules) and enable contact angle calculations (Fig. 36). Surfaces were 

prepared in two ways, by periodic replication, where all patches possess identical 

orientation, or randomly, by allowing random 180o rotations of individual patches, 

however, the measured contact angles proved virtually insensitive to replication 

method (Table 10). Randomized patterns of surfaces of types A and B, and mixed AB 

surfaces are shown in Fig 33. Droplet contours from Molecular Dynamics simulations 

are presented in Fig. 36.  

 

 

 

 

 Periodic Randomized 

Type A 22 o±3 o 20o±4o 

Type B 115o±1 o 113o±1 o
 

Type C 20o±3o 18o±2o 

 

Table 10. Contact angles on flattened protein surfaces prepared by periodic or random 

replication of patches of type A, B and C 
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Figure 36. Typical drop profiles for several types of protein surfaces, the circles 

represent the data points for surface types A (green), B (red) and mixed A/B at 50% 

(blue). Black solid lines are fitted to simulated data, and the dashed line denotes the 

height of flattened protein surfaces. Inset: Nanodrop geometry used in water contact 

angle calculations on a mixed A/B surface. 
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 The wetting coefficient, cosc, displays large positive deviations from 

predictions of Cassie equation, Eq. 1-3. The Israelachvili and Gee73 approximation 

presents an apparent improvement over Cassie’s equation, however, the agreement 

may be spurious as this prediction has been derived to describe effects of mixing at 

the molecular scale. As the solvent-induced contribution to the adhesion free energy 

equals cosc, these deviations quantify the nonadditivity of surface biointeractions. 

In Fig. 37 Bottom we present the results for surfaces with smaller hydrophilic 

patches of type C (c~18o) mixed with patches of type B. Patch sizes of both types 

equal 0.7x0.8 nm2. Compared to mixtures of bigger patches shown in Fig. 37 Top, the 

present system features even stronger deviations in cosine of contact angles from both 

Cassie71-72 and Israelachvili & Gee73 predictions.  
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Figure 37. Top: Representative regions of melittin surface A (c~20o
, left, lower inset) 

and hydrophobic fragment B (c~113o, upper inset). Symbols: cosc as a function of 

the hydrophobic surface fraction, fB, in mixtures of types A and B. Black dashed line: 

additivity approximation71-72. Blue dotted line: approximation from Israelachvili and 

Gee,73 Same color notations as in Fig 33. Bottom: cosc as a function of the 

hydrophobic surface fraction in mixtures of fragments B and C (c~20o
, red rectangle 

in the right lower inset). Patch areas are 3.5 nm2 in system A/B and 1/6 of that in 

system C/B. 
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5.3 Discussion 

5.3.1 Solvent-accessible area 

The original Cassie equation (Eq. 1-2) included approximate accounts for both 

the chemical heterogeneity and variable roughness on a mixed surface. In subsequent 

applications of Cassie relation, the roughness of individual surface components was 

often included implicitly 74, 76-77, 81, 83, by using the values of cos of pure 

components, which already reflected any roughness on the homogeneous surface. For 

this approach to be valid, the roughnesses and concomitant exposures of distinct 

surface components to the solvent should be insensitive to mixing. This condition is 

usually met when combining sizeable surface patches as done e.g. on our protein-like 

model surfaces. On molecularly mixed surfaces, however, the exposure of taller or 

bulkier surface moieties (-CN > -CH3 > -NH2) increases while shorter groups become 

effectively shielded, and their solvent accessible surface (SAS) 144-145 reduced below 

the value observed on a homogeneous surface. The share of the solvent accessible 

surface of each group type (), f(SAS), rather than its stoichiometric fraction, f, 

therefore approximately determines the group’s contribution to surface properties. 

This assumption is valid as long as the total exposed area, unlike component shares, 

remains approximately invariant.  

In Fig. 38 we compare the two measures of surface composition, the fractions of 

hydrophobic surface (area under -CH3 groups on synthetic surfaces, or type B 

fragments on protein-like surfaces) calculated in terms of SAS, or from projected 

areas. SAS areas were calculated using the procedure from ref145. First, we generate a 
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spherical mesh of test points to represent the total accessible surface of each atom on 

the surface, the radius of the sphere is the  between the atom and the molecular 

probe (water oxygen in SPC/E model) of the Lennard-Jones parameters from 

corresponding force fields. The test points on the mesh sphere are evenly distributed 

at the best approximation by Golden Section Spiral distribution. Each test point has 

been assigned a small portion of the accessible surface of the atom. If the test points 

of one certain atom are outside the spheres generated by any other atoms (no overlap), 

the portions of the accessible surface assigned to these points are assigned to that 

atom as accessible surface area. We note that each surface has two sides in principle, 

but we only count the upper side (facing up along the z axis).  

Our results show -CH3 groups to be overrepresented in their share of total SAS on 

-CH3/-NH2 surface, while the opposite is true in the -CH3/-CN mixture. 
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Figure 38. Composition of mixed hydrophobic/hydrophilic surfaces comprised of 

-CN/-CH3 (magenta), -NH2/-CH3 (blue) and flattened melittin surfaces (green) 

calculated from SAS (y axis), or from projected surfaces (x axis). 
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 The changes in solvent accessible surfaces conform to our results for a set of 

physical properties on synthetic surfaces (Figs. 28, 29, 30), all of which show a 

disproportionate influence of the bigger species in the mixture. To account for the 

uneven exposure of moieties of different types on a mixed surface, in Fig. 39 we 

present the modified additivity plots of the simulated cosine of contact angle as a 

function of the fraction of SAS of methyl groups, f (SAS) CH3. For both -CH3/-NH2 

and -CH3/-CN mixtures, in this representation, the majority of the points agree with 

linear additivity prediction. The modified additivity plots for the mixed -CH3/-NH2 

with different types of force fields are plotted in Fig. 40, which demonstrates that the 

steric effects are not force fields dependent. 
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Figure 39. (top) Cosine of contact angle on mixed -CN/-CH3 and (bottom) -NH2/-CH3 

surfaces as a function of the fractional solvent accessible area f (SAS) CH3 (see text). 

The dashed lines are the Cassie predictions. Open squares represent the cosine of 

contact angle with larger (4X4 groups) patches. Insets are sketches of wet molecularly 

rough -CN/-CH3 and -NH2/-CH3 surfaces, mixed at fCH3=0.5. 
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Figure 40. Cosine of contact angles on mixed -CH3/-NH2 surfaces as a function of the 

fraction of surface defined by solvent accessible surface, SAS, covered by -CH3, with 

both CHARMM and Amber force fields. 

 

According to Fig. 38, the solvent accessible surfaces of hydrophobic and 

hydrophilic protein components are virtually insensitive to mixing at the patch level, 

and the fractions of net SAS remain very close to the fractions of projected surface 

areas for the two patch types.  

There is a different treatment for molecular surface area in literature146, as shown 

in Fig. 41, the molecular surface area (MSA) was developed by Connolly146, with 

similar idea of the SASA described in the previous section. The MSA takes the 

concave curvature of the molecular surfaces into account, and is reported to perform 

better in the predictions of hydrophobic interaction additivity with implicit solvent 
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models. The Molecular surface areas are calculated by using Connolly molecular 

surface package.147 

 However, as we are only interested in the fractions of the areas on different 

types of patches on the molecular surfaces, the fractional areas of protein surfaces we 

calculated by Molecular Surface Area (MSA)146 are indistinguishable from f (SAS). 

Steric effects, critical on molecularly mixed synthetic surfaces, are therefore not a 

significant source of deviations of cosc from additivity on mixed protein-like 

surfaces. 

 

 

 

 

Figure 41. Definitions of solvent-accessible surface area (SASA)145 and of molecular 

surface area (MSA) 146 are illustrated by a configuration of three spherical molecules 

(shaded circles). Each open circle here is a spherical probe SASA of the 

three-methane configuration is traced out by the center of the probe. MSA 

corresponds to a part of the probe surface facing the three-molecular configuration. 
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On the other hand, the original roughnesses of the surfaces are initially included 

in Cassie’s linear additive equation (Equation 1-1, cosc = fArAcosA + fBrBcosB). At 

the molecular level, we are able to estimate the production of the roughness factor and 

the areal fraction assuming the Wenzel-like relation148, and the pre factors including 

the roughness of the surface, are calculated as /
Patch TotalSAS SASr A A  per patch, where  

denotes the surface type and the ASAS is the surface area calculated by SAS.  

The contact angle results from above descriptions for the mixed systems are 

plotted in Fig. 42. The simulation results (red spheres) qualitatively agree with 

predictions from the additivity relation using the complete formula. Cassie equation 

still holds at the molecular level, when the molecular roughness is taken into account. 
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Figure 42. Red spheres (top) Cosine of contact angle on mixed -CN/-CH3 and 

(bottom) -NH2/-CH3 surfaces as a function of the fractional area fCH3 (see text). The 

blue spheres are the Cassie predictions with relative roughness included (Equation 1-1, 

see text). 
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5.3.2 Local water compressibility 

To complement the contact angle calculations, we also monitored density 

fluctuations of interfacial water above our model surfaces. Local water 

compressibility, , can be obtained from density fluctuations: 

   
2 2N N

kT
N

      


 
         (5-2) 

Here,  is the number density and N the number of water molecules in specified 

volume, k is Boltzmann constant, T is temperature, and the angular brackets denote 

the ensemble average. To establish a connection with ref87, we determined density 

fluctuations within the solvation layer under the droplets at varied surface 

compositions. The calculations are done with at least four 400 ps trajectories on each 

type of the surfaces (mixed -NH2 and -CH3 synthetic surface, using AMBER Parm-94 

force field95). Only water molecules within 4 Å distance from any surface heavy atom 

are considered. To discard the effect of fluctuations at the three-phase droplet contour, 

we considered only the central region of droplet base within 20 Å from the projection 

of the center of mass of the entire water drop on xy plane. Water compressibility for 

the whole spectrum of compositions is presented in Fig 43. Water near hydrophobic 

surfaces features higher compressibility than near hydrophilic ones. In agreement with 

ref 141 (see also Fig. 2 in ref149),  the compressibility variation with surface 

composition is especially rapid on hydrophobic surfaces, explaining the increased 

slope of  at high fractional solvent accessible surface, f(SAS)CH3 , in Fig 43(b). The 

observed compressibility dependence on f(SAS)CH3  reaffirms our findings pertaining 

to extended synthetic surfaces with mixed composition. 
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Figure 43. Water compressibility (in 

arbitrary units) next to surfaces with 

different fraction of hydrophobic groups 

(y axis); x axis represents the mole 

fraction of -CH3 groups on mixed 

–NH2/-CH3 surfaces in a); hydrophobic 

fractional area in terms of SAS in b); and 

cosine of contact angle in c). Error bars 

are obtained as standard error in the mean.
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5.3.3 Non-additive character of polar surface sites 

The few outliers observed in Fig. 39 at low f (SAS) CH3 can be explained in terms 

of reported asymmetry in the effect of polar heterogeneities: the effect of adding or 

removing a polar group is much weaker when the background is already hydrophilic. 

This is attributed87 to increased interface softness89 atop apolar domains; such 

interfaces are much more susceptible to surface perturbations34, 87. The asymmetry can 

be increased by competition among orienting fields acting on water dipoles in the 

presence of multiple polar sites.  

These anti-cooperative effects are especially prominent on protein-like surfaces 

characterized by pronounced polarity variations. Note that hydrophilic protein patches 

(Fig. 37, patch A, c~20o) are themselves quite heterogeneous, comprising both 

hydrophobic and highly polar groups, which strongly influence the surface even as a 

minority component. In the presence of these extremely polar sites, the asymmetric 

influence of surface heterogeneities87 dominates the dependence of the contact angle 

on surface composition. The substantially stronger impact of polar groups on the 

hydrophobic background (fB in Fig. 37 close to unity) explains strong positive 

deviations from linear dependence of cosc on fB.  
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5.3.4 Patch size effects 

On surfaces dominated by polar groups, or on strongly segregated surfaces, there 

exist islands of predominant hydrophilic character and lengthscale comparable to the 

drop size. In these situations, water bias for large hydrophilic domains generally 

reduces contact angles 81, 83.  

Partial segregation, resulting in moderate-size patches can affect the contact angle 

in two different ways. On molecularly mixed synthetic surfaces, strongly influenced 

by the changes in the solvent accessible surface, the smaller, partially shielded 

moieties regain their exposure to water upon demixing. This reduces the contact angle 

of -CH3/-NH2 mixtures, but increases it in mixtures of -CH3/-CN. To estimate the 

magnitude of the effect, we performed additional simulations with larger patches (4x4 

groups in a patch) in equimolar mixtures (fCH3=0.5) devoid of large segregated 

domains. Results are given as open square points in Figs. 1 and 6. In the mixture 

-CH3/-NH2, the increase in the patch size rises the fractional solvent accessible area f 

(SAS) NH2 from ~0.31 to ~0.47, lowering contact angle by ~10o. In contrast, 

segregation reduces exposure of taller -CN groups in the -CH3/-CN mixture, lowering 

f (SAS) CN ~0.7 to ~0.6, rising c by ~3o. This agrees with calculations on mixed 

-CH3/-CH2-OH surfaces where an increase in patch size lead to higher contact angle83. 

As shown in Fig. 39, the use of simulated SAS fractional areas correctly accounts for 

these changes.  

On the protein-like surfaces, on the other hand, increased patch size emphasizes 

the anti-cooperative character of water/surface interactions. While patch size has no 
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effect on pure surfaces, transition from small to moderate-size patches can result in 

higher contact angles in the mixtures81, 83. This is corroborated by the comparison of 

the results for two different patch sizes in Fig 37, showing increased deviations of 

cosc from the Cassie line upon six-fold reduction in the area of the patches. The 

observed increase is consistent with predictions from a recent MD study of water 

structure and potential of mean force between heterogeneous platelets with varied 

surface pattern 35. 
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5.4 Concluding Remarks 

We identify two distinct mechanisms responsible for the non-additivity of wetting 

free energies on heterogeneous surfaces. On molecularly mixed synthetic surfaces 

with moderately polar ingredients steric effect dominate, and the observed positive 

and negative deviations from Cassie equation are explained in terms of changes in 

solvent accessible areas of mixture components. Prototypical biological surfaces, 

characterized by strongly contrasting polarities, on the other hand, generally show 

positive deviations in cosc, which can be rationalized by non-additive interactions 

between water and highly polar surface sites.  

An additional source of deviations from the Cassie behavior can be traced to 

nonuniform wetting of polar and apolar domains under the droplet perimeter. When 

adjacent surface areas have very different polarities, fluctuations of nanodroplet base 

83, 150 favor inclusion of polar patches. Simulated distribution of water atop a 

heterogeneous surface comprised of melittin fragments, (Fig. 44), confirms 

preferential wetting of hydrophilic areas. The bias will be strongest in the area 

beneath the drop perimeter, reducing the contact angle150.  
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Figure 44. Distribution of water molecules near symmetrically mixed protein surfaces 

with patches of type A (hydrophilic) and type B (hydrophobic) indicate preferential 

wetting of hydrophilic patches. N(z) is the number of water molecules in slabs z  

0.5Å located above hydrophilic (black) or hydrophobic (red) patches. Note also the 

comparatively loose liquid interface on hydrophobic domains.  
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Further, the liquid interface above a neat hydrophobic domain can be slightly 

detached, but will adhere closely when the interface is pinned by adjacent hydrophilic 

patches30, 34, 78, 89, 151. Effective roughness, and substrate/solvent interaction on 

hydrophobic domains can therefore depend on the environment, introducing additional 

uncertainty in the predictions of Cassie equation. 

 Qualitatively, the above molecular mechanisms rationalize the large positive 

deviation in cosine of contact angles on mixed protein-like surfaces. The intricate 

influence of anti-cooperative hydration, nonuniform wetting, and partial detachment 

of the liquid/hydrophobe interface remain to be integrated into a predictive theory for 

wetting free energy of heterogeneous biosurfaces, a challenge to be addressed in 

future studies.  

In future studies, we are also planning to evaluate the averaged surface forces on 

these mixed surfaces, which we will be able to compare to the experiments that 

directly measure the forces in hydrophobic systems (Surface Forces Apparatus (SFA) 

and Atomic Force Microscope (AFM)).46 The surface forces on heterogeneous 

surfaces should have the same additivity as the contact angles (linearly additive or 

non-additive).  
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Appendices 

Appendix A. Derivations on Van der Waals effects on surface free 

energy near the curved surfaces 

Fowler’s Equation represents the surface tension of liquid at a planar interface. 
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Equation (A-1) is derived by the integration over the volume shown in Fig. A1a, 

where ( ) 1r g r   , and ( ) 0r g r   , N/V is the number density of the liquid 

phase.  

If we use the Lennard-Jones potential 
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    with SPC/E (extended 

Simple Point Charge) water model parameters
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3.166 A  , 0.6502kJ/molE  , the Van 

der Waals interactions’ contribution to the surface tension of a planar surface is ~28.23 

mN/m. 
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Fig A1. Sketch for the derivation of Fowler’s equation (a) and its extension for curved 
surface (b). 
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The full analytical derivation of the Van der Waals interaction contribution on the 

solvation free energy of curved hydrophobic surface follows:  

As shown in Fig. A1b, 
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 is the difference in number density of the two phases at the interface, then 
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① For R  , separate the integrals into several parts: 
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② For R  , Do it similarly: 
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Appendix B. Non-Linear Poisson–Boltzmann equation 

The Poisson–Boltzmann (PB) equation is a differential equation that describes 

electrostatic interactions in ionic solutions: 
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e e ed d
r n n
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r is the radial coordinate,  is the electrostatic potential, e0 is the elementary charge, k is 

the Boltzmann constant, T is the absolute temperature, and 0n and 0n are the number 

densities of simple ions in the reference point of the electrostatic potential.   

 The system consists of a macro-ion with charge zi and radius Ri, in a spherical cell 

with a radius Rp, the boundary conditions are set as  
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The equation B-1 is solved numerically in both aqueous and gas phase systems (Fig. 

17 in main text). The reference concentration 0n and 0n were not know in advance, their 

values were determined by a trial and error procedure to satisfy the boundary conditions 

and yield the desired ion concentration ci as 

0
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where V is the volume of the system, NA is Avogadro number, uiP is the hard core 

potential iPu   when riP < Ri and zero otherwise. 

 The values of free energies of aqueous system is quite small compared to the gas 
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phase system, and when we take the difference between them, we get back the results 

predicted by the simplified Born equation:  

2
0( )1
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R
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The mean field method failed to give satisfied predictions of solvation free energies due 

to the difficulties discussed in main text (Section 3.2) 
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Appendix C. Supplemental module to calculate solvation free energy in 

DL_POLY package 

 

 Module tielec_module 

c******************************************************************** 

c     Fortran 90 format 

CC    dl_poly module for calculating electrostatic energy for thermodynamic 

integration! 

CC  Using Ewald Sum, similar to A-T book 

CC    Jihang Wang 

c     2008/04/12  

c******************************************************************** 

      use setup_module 

      use config_module 

      Contains 

C******************************************************************* 

      Subroutine ti_driver (natms,Etotal,Eion,Ewater) 

c******************************************************************** 

c     dl_poly subroutine for thermodynamic integration quantity  

c     for Electrostatic interaction only, Ewald Summation Method        

c******************************************************************** 

      Implicit None 

      Integer nsol, ii,i,j,k,l,m,n,natms 

      Double Precision Ewater, Etotal, Eion       

      Double Precision EwaterR, EtotalR, EionR 

      Double Precision EwaterK, EtotalK, EionK 

      Double Precision KAPPA,boxl,fact1, rcut 
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      Double Precision FUNCTION ERFC 

      Integer natms 

      Parameter (fact1=1389.35386)             

      Integer Nw,Ni       

      nsol=0 

      Ewater=0.0D0 

      Etotal=0.0D0 

      Eion=0.0D0 

      EwaterK=0.0D0 

      EtotalK=0.0D0 

      EionK=0.0D0 

      EwaterR=0.0D0 

      EtotalR=0.0D0 

      EionR=0.0D0 

      rcut=9.0 

      Do ii=1,natms 

      If(atmnam(ii).EQ."OW".OR.atmnam(ii).EQ."HW" 

     & .OR.atmnam(ii).EQ."SP".OR.atmnam(ii).EQ."SN") Then 

      nsol=nsol+1 

      Endif  

      Enddo 

      Nw=nsol 

      Ni=nsol+1 

      boxl=cell(1) 

      KAPPA=5.0/boxl 

CCCC  water-water interaction 

       Call RWALD (EwaterR,1,Nw,Nw) 
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       Call KWALD (1,Nw,EwaterK) 

       Ewater=(EwaterR+EwaterK)*fact1 

CCCC  Ion-Ion interaction 

       Call RWALD (EionR,Ni,natms,Nw) 

       

       Call KWALD (Ni,natms,EionK) 

       Eion=(EionR+EionK)*fact1       

CCCC  Total Electrostatic Energy 

      Call RWALD (EtotalR,1,natms,Nw) 

      Call KWALD (1,natms,EtotalK) 

      Etotal=(EtotalR+EtotalK)*fact1        

   Write(111,*) Nw,Ni,natms 

      return 

      CONTAINS 

C*******************************************************************       

SUBROUTINE KWALD (N1,N2,VK) 

       Implicit None 

       Double Precision VD,twopi,Ksq 

       Double Precision Cumcos,Cumsin 

       Double Precision RXI,RYI,RZI,ZI 

       Double Precision RSQPI, VS, VK, coeff,kri 

       Integer N1,N2,II,I,J,m,i1,j1,m1,ix,ij,iz,iy 

       Double Precision kx(-8:8), ky(-8:8), kz(-8:8)  

       Parameter(twopi=6.2831852, RSQPI=0.56419) 

       VD=0.0D0 

       VK=0.0D0 

       VS=0.D0 
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       Do i1=-8,8 

       kx(i1)=DBLE(i1)*twopi/boxl 

       ky(i1)=DBLE(i1)*twopi/boxl 

       kz(i1)=DBLE(i1)*twopi/boxl 

       Enddo 

        coeff=0.0D0 

        Do ix=-8,8 

           Do iy=-8,8 

             Do iz=-8,8 

       If(ix.EQ.0.AND.iy.EQ.0.AND.iz.EQ.0) Goto 100 

       Ksq=kx(ix)*kx(ix)+ky(iy)*ky(iy)+kz(iz)*kz(iz) 

       coeff=twopi/Ksq*exp(-Ksq/(4.*KAPPA*KAPPA)) 

        Cumcos=0.D0 

        Cumsin=0.D0 

        DO 123 I = N1, N2 

           RXI = xxx(I) 

           RYI = yyy(I) 

           RZI = zzz(I) 

           ZI  = chge(I)                         

       kri=kx(ix)*RXI+ky(iy)*RYI+kz(iz)*RZI 

       Cumcos=Cumcos+ZI*COS(kri) 

       Cumsin=Cumsin+ZI*SIN(kri) 

 123     Continue 

       VD=VD+coeff*(Cumcos*Cumcos+Cumsin*Cumsin)               

 100     Continue 

             Enddo 

           Enddo 
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         Enddo 

       VD=VD/boxl**3        

        DO 25 II = N1, N2 

           VS = VS + chge(II) * chge(II) 

 25     CONTINUE 

        VS = RSQPI * KAPPA * VS 

        VK = VD - VS               

       Return  

        End Subroutine KWALD 

 

C*******************************************************************   

SUBROUTINE RWALD ( VR,N1,N2,Nw) 

 Implicit None 

        INTEGER  N1,N2, I, J,Nw, Nmi,Nmj 

        Double Precision  VR,ROX, ROY, ROZ 

        Double Precision  RXI, RYI, RZI, ZI, RXIJ, RYIJ, RZIJ 

        Double Precision  RIJSQ, RIJ, KRIJ,  VIJ 

        VR = 0.0D0 

        DO 100 I = N1, N2-1 

         Nmi=0 

        If (I.LE.Nw) Nmi=INT((I-1)/3)+1 

           RXI = xxx(I) 

           RYI = yyy(I) 

           RZI = zzz(I) 

           ZI  = chge(I) 

           DO 99 J = I+1, N2 

   Nmj=0 
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        If (J.LE.Nw) Nmj=INT((J-1)/3)+1 

   If (Nmi.EQ.Nmj.AND.Nmi.NE.0) Goto 99 

              RXIJ = RXI - xxx(J) 

              RYIJ = RYI - yyy(J) 

              RZIJ = RZI - zzz(J) 

           ROX=RXIJ 

           ROY=RYIJ 

           ROZ=RZIJ   

              RXIJ = RXIJ - boxl*ANINT(ROX/boxl) 

              RYIJ = RYIJ - boxl*ANINT(ROY/boxl) 

              RZIJ = RZIJ - boxl*ANINT(ROZ/boxl) 

              RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ 

              RIJ   = SQRT(RIJSQ) 

          If (RIJ.LT.rcut) Then 

              KRIJ  = KAPPA * RIJ 

              VIJ   = ZI*chge(J) * ERFC(KRIJ)/RIJ 

              VR    = VR + VIJ 

     Endif 

99         CONTINUE 

100    CONTINUE 

        RETURN      

        END Subroutine RWALD 

C******************************************************************* 

      End Subroutine ti_driver 

C*******************************************************************    

Double Precision FUNCTION ERFC ( X ) 

******************************************************************* 
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** APPROXIMATION TO THE COMPLEMENTARY ERROR FUNCTION              

C    ** REFERENCE:                                                     

C    ** ABRAMOWITZ AND STEGUN, HANDBOOK OF MATHEMATICAL 

FUNCTIONS,    ** 

C    **    NATIONAL BUREAU OF STANDARDS, FORMULA 7.1.26               

******************************************************************* 

        Double Precision   A1, A2, A3, A4, A5, P 

        PARAMETER ( A1 = 0.254829592, A2 = -0.284496736 ) 

        PARAMETER ( A3 = 1.421413741, A4 = -1.453152027 ) 

        PARAMETER ( A5 = 1.061405429, P  =  0.3275911   ) 

        Double Precision   T, X, XSQ, TP 

 ******************************************************************* 

        T  = 1.0 / ( 1.0 + P * X ) 

        XSQ = X * X 

        TP = T * ( A1 + T * ( A2 + T * ( A3 + T * ( A4 + T * A5 ) ) ) ) 

        ERFC = TP * EXP ( -XSQ ) 

        RETURN 

        END Function ERFC 

CC******************************************************************    

Double Precision FUNCTION VothF ( RR )   

******************************************************************* 

C    Voth's idea for Ewald alternative for coulomb Force! 

C** REFERENCE:   JPCB 112, 4711 (2008)                                                  

******************************************************************  

 Implicit None 

        Double Precision  A0, A1, A2, A3, A4, A5, A6, A7, RR,R 

        PARAMETER (A0=-0.165477570871D-3,A1=0.288823451703D-3) 
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        PARAMETER (A2=-0.122247561247D-3,A3=0.963712701767D-5 ) 

        PARAMETER (A4=0.251954672874D-6, A5=-0.735796273353D-7) 

        PARAMETER (A6=0.353601771929D-8, A7=-0.525765995765D-10) 

        Double Precision   C1, R2,R3,R4,R5,R6,R7 

        parameter (C1=5.29177249D-1) 

C   have to convert length into atomic units (C1) 

 VothF=0.D0 

 R=RR/C1 

 R2=R*R 

 R3=R2*R 

 R4=R2*R2 

 R5=R4*R 

 R6=R3*R3 

 R7=R6*R 

 VothF=A0+A1*R+A2*R2+A3*R3+A4*R4+A5*R5+A6*R6+A7*R7  

 Return 

        END Function VothF 

CC****************************************************************** 

   Double Precision FUNCTION VothE ( RR ) 

  ******************************************************************* 

C    Voth's idea for Ewald alternative For Coulomb Energy! 

C** REFERENCE:   JPCB 112, 4711 (2008)                                                  

******************************************************************* 

 Implicit None 

        Double Precision  A0, A1, A2, A3, A4, A5, A6, A7, R,RR 

        PARAMETER (A0=-0.165477570871D-3,A1=0.288823451703D-3) 

        PARAMETER (A2=-0.122247561247D-3,A3=0.963712701767D-5 ) 
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        PARAMETER (A4=0.251954672874D-6, A5=-0.735796273353D-7) 

        PARAMETER (A6=0.353601771929D-8, A7=-0.525765995765D-10) 

        Double Precision   C1,R2,R3,R4,R5,R6,R7,R8 

        parameter (C1=5.29177249D-1) 

C   have to convert length into atomic units (C1) and converted back later (C2) 

 VothE=0.D0 

 R=RR/C1 

 R2=R*R/2.D0 

 R3=R2*R/3.D0 

 R4=R2*R2/4.D0 

 R5=R4*R/5.D0 

 R6=R3*R3/6.D0 

 R7=R6*R/7.D0 

 R8=R4*R4/8.D0 

 VothE=A0*R+A1*R2+A2*R3+A3*R4+A4*R5+A5*R6+A6*R7+A7*R8 

 VothE=VothE*C1 

 Return 

        END Function VothE 

CC******************************************************************  

      END module tielec_module 
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coswl wv C        

Appendix D. Generalized Kelvin Equation calculations of different 

geometries 

Confinement affects the phase behavior of liquid water. If the separation of two finite 

size hydrophobic walls (contact angle greater than 90o) is smaller than the critical 

distance predicted by the Kelvin Equation, the water will spontaneously evaporate. 

Grand Potentials for liquid and vapor phases: 

Liquid phase:      (C-1) 

Vapor phase:       (C-2) 

P is the pressure, A is the coexistence area, and Aw is the confined wall surface area, V is 

the volume of the confined region 

Surface tension:                 (C-3) 

c is the contact angle of water on the surface 

         (C-4) 

 is the number density, and  is the chemical potential 

Capillary evaporation requires V L    

cos 0W cV A A                   (C-5) 

Let Dc be the critical distance for the capillary evaporation: 

 

 

 

 

L W wlPV A   

V V W wvP V A A   

1VP P atm    
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Appendix D1. The confinement between two planar surfaces: 

 

a)  

b)  

c)  

a)  

L is the lateral size of plates, and D is the distance between plates, from equation C-5, 

2 cos

4 /
c

cD
L

 
  



         (C-6) 

 

a) Contact angle has to be larger than 90o, cos 0C  , to make Dc positive. 

 

b) When L  , Critical distance cos
CcD   

 

c) When lateral size of the plates L is small (several nanometers or less) 

Critical distance cosC CD L   , 

If L= 2 nm (similar to the mellittin dimer size),  

and cos ~ 0.4C    (contact angle ~ 113o)  

 The critical distance Dc is ~4 Å          

  

 

DD

 

2

2

2

4
wA L

A L D

V L D

 
 

 
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Appendix D2. The confinement inside a hemisphere surface: 

 

 

 

 

 

 

 

R is the radius of the hemisphere 

 

           (C-7) 

 

Contact angle has to be larger than 120o, 
1
2cos c   , to make R positive 

 

At the extreme condition cos 1c    ( 180 )o
C   

Critical radius Rc ~ 1 m 

 

 

 

 

 

3(1 2cos )

2
C

cR
 
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 
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Appendix D3. The confinement in a half-cylindrical surface: 

  

 

 

 

 

 

L is the length of the cylinder, and R is the radius 

      

     (C-8) 

 

Contact angle has to be larger than 129.5o, 
2cos c     

 

At the extreme condition cos 1C    ( 180 )o
C   

Critical radius Rc ~ 0.5 m 
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2
W

V R L

A R L
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


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 
 

2 (2 cos )c
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 
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
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 Appendix D4. The confinement between two cylinders 

 

 

 

 

 

 

 

 

 

D is the distance between two cylinders, R is the radius, and L is the length of each 

cylinder. 

If L  ,       

2 2 cos

2 2
cR R

D
R

     
  
 


      (C-9) 

If the contact angle is ~113o, cos ~ 0.4C   

the size of the cylinder tube ~ 5 Å, Critical distance Dc~4.4 Å 
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Appendix D5. The confinement between two hemispheres: 

 

D is the distance between two centers 

R is the radius 

 
 
 
 
 

 
 
 
 

24
34 cos

2
CR R

D
R

   
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 
 

        (C-10) 

 

If R is in the nanometer range, cosC CD R    

For example, if the contact angle is ~113o, cos ~ 0.4C   

And the radius of the hemispheres ~ 10 Å 

Critical distance Dc~ 8 Å 
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Appendix E. Additional protein systems in capillary evaporation studies 

 

PDB ID Category Ni Nr 
2 2N N

N

    
 

Nr/Ni% 

1hsi dimer 115 98.6  0.28  86  

1J30 dimer 135 115.7 0.25  86  

1i4s dimer 107 83.8  0.66  78  

1jvl dimer 126 109.4 0.24  87  

1cmb dimer 102 67.5  0.65  66  

1jr8 dimer 111 81.6  0.73  74  

1hul dimer 108 94.6  0.26  88  

1ipi dimer 109 75.7  0.65  69  

1bja dimer 108 97.8  0.15  91  

1k94 dimer 113 91.0  0.46  81  

1bj3 dimer 112 101.0 0.18  90  

1gfw dimer 131 73.8  1.91  56  

1bbh dimer 115 86.4  0.74  75  

1eyv dimer 109 85.8  0.58  79  

1ub3 tetramer 161 113.0 1.22  70  

1tvx tetramer 129 116.8 0.21  91  

1xz4 tetramer 122 105.0 0.00  86  

1tlf tetramer 119 112.9 0.08  95  

1plf tetramer 116 101.8 0.29  88  

4aah  tetramer 152 130.7 0.30  86  

 

 

 



www.manaraa.com

                                                       158 
 

 

PDB ID Category Ni Nr 
2 2N N

N

    
 

Nr/Ni% 

1han multi-domain 114 73.7  1.97  65  

1plq  multi-domain 114 73.8  1.94  65  

5ldh multi-domain 117 87.1  0.90  74  

1a5z multi-domain 114 94.6  0.62  83  

1mdr multi-domain 110 80.5  0.79  73  

1pgs multi-domain 118 97.9  0.38  83  

1boh multi-domain 120 89.7  0.90  75  

1bg5 multi-domain 111 89.3  0.53  80  

1akl multi-domain 128 102.3  0.43  80  

1cne multi-domain 127 108.7  0.33  86  

1hyt multi-domain 121 98.8  0.45  82  

1clc multi-domain 124 96.9  1.01  78  

1aco multi-domain 133 115.1  0.33  87  

1dhy multi-domain 120 72.0  2.17  60  

1cpo multi-domain 113 85.3  2.05  75  

1pkp multi-domain 118 86.4  0.62  73  

1ldm multi-domain 113 71.4  1.82  63  

1bli multi-domain 115 88.6  0.39  77  

2mbr multi-domain 112 99.4  0.23  89  

 

 

 

 

 



www.manaraa.com

                                                       159 
 

Appendix F. Grand Canonical Monte Carlo (GCMC) simulations on 

surface tension 

In grand canonical ensemble, the system volume, temperature and chemical 

potentials of the species are kept constant by allowing particle insertions and deletions. 

The acceptance probabilities for attempted additions and deletions are given by   . 

             

(F-1)   

 

In the equation above, ex is the excess chemical potential of a molecule, U is the 

energy change upon addition or deletion of a molecule, and <N> is the average number 

of molecules in the system, kT  and k is the Boltzmann constant, and T is the absolute 

temperature. 

 We use the GCMC method to study the water surface tension on different types of 

surfaces described in Chapter 5 with thermodynamic integration (See section 2.1.4). In 

our simulation, the water molecules are represented by the SPC/E model, chemical 

potential  is carefully tuned to be -12.52kT with a simulation box of 19.75*19.75*19.75 

Å3 in size. 

The surface tension is calculated in equation (F-2), where S is the surface area, and U is 

the energy between water and surface. 

1
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 The reference system is set to be a smooth hydrophobic surface as described in 

(Bratko et al, J. Am. Chem. Soc. 129, 2504, 2007), the interaction parameters of atoms on 

the surface are gradually turned on by the coupling parameter , while the interactions 

parameter of the smooth surface is gradually turned off by the conjugated factor (1-) 

simultaneously. 

 We record wetting surface free energy  of the graphene-like surface (described in 

Chapter 5) to be 19.3 mN/m, and from the relation between the contact angle and surface 

tension 1~ cos ( / )c lv   , the contact angle on this surface is ~110o, in good 

agreement with our molecular simulation studies. 
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